Loading…
Bounds on the Size of Locally Recoverable Codes
In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (er...
Saved in:
Published in: | IEEE transactions on information theory 2015-11, Vol.61 (11), p.5787-5794 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843 |
container_end_page | 5794 |
container_issue | 11 |
container_start_page | 5787 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Cadambe, Viveck R. Mazumdar, Arya |
description | In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds. |
doi_str_mv | 10.1109/TIT.2015.2477406 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1728001605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7247728</ieee_id><sourcerecordid>1816064156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5dtk2y-9qjFj0JB0HoOSXYWt2w3NekK9deb0uLB0zDM8w4zD0LXlEwoJdV0OV9OGKFiwrhSnMgTNKJCqKKSgp-iESFUFxXn-hxdpLTKLReUjdD0IQx9nXDo8fYT8Hv7Azg0eBG87bodfgMfviFa1wGehRrSJTprbJfg6ljH6OPpcTl7KRavz_PZ_aLwZUW2hZRMcWelEsJzaGpbORBOKsc1U3XjOLjGa9UIUeuq1Ln4inkmZU2lo5qXY3R32LuJ4WuAtDXrNnnoOttDGJKhmkoiORUyo7f_0FUYYp-vM1QxnV-VRGSKHCgfQ0oRGrOJ7drGnaHE7A2abNDsDZqjwRy5OURaAPjD1X7MdPkLt0Np-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728001605</pqid></control><display><type>article</type><title>Bounds on the Size of Locally Recoverable Codes</title><source>IEEE Xplore (Online service)</source><creator>Cadambe, Viveck R. ; Mazumdar, Arya</creator><creatorcontrib>Cadambe, Viveck R. ; Mazumdar, Arya</creatorcontrib><description>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2477406</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Codes ; Coding ; Concatenated codes ; Constants ; Information theory ; Linear codes ; Maintenance engineering ; Mathematical models ; Optimization ; Parity check codes ; Symbols ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2015-11, Vol.61 (11), p.5787-5794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</citedby><cites>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7247728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Cadambe, Viveck R.</creatorcontrib><creatorcontrib>Mazumdar, Arya</creatorcontrib><title>Bounds on the Size of Locally Recoverable Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</description><subject>Binary codes</subject><subject>Codes</subject><subject>Coding</subject><subject>Concatenated codes</subject><subject>Constants</subject><subject>Information theory</subject><subject>Linear codes</subject><subject>Maintenance engineering</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parity check codes</subject><subject>Symbols</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5dtk2y-9qjFj0JB0HoOSXYWt2w3NekK9deb0uLB0zDM8w4zD0LXlEwoJdV0OV9OGKFiwrhSnMgTNKJCqKKSgp-iESFUFxXn-hxdpLTKLReUjdD0IQx9nXDo8fYT8Hv7Azg0eBG87bodfgMfviFa1wGehRrSJTprbJfg6ljH6OPpcTl7KRavz_PZ_aLwZUW2hZRMcWelEsJzaGpbORBOKsc1U3XjOLjGa9UIUeuq1Ln4inkmZU2lo5qXY3R32LuJ4WuAtDXrNnnoOttDGJKhmkoiORUyo7f_0FUYYp-vM1QxnV-VRGSKHCgfQ0oRGrOJ7drGnaHE7A2abNDsDZqjwRy5OURaAPjD1X7MdPkLt0Np-g</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Cadambe, Viveck R.</creator><creator>Mazumdar, Arya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>Bounds on the Size of Locally Recoverable Codes</title><author>Cadambe, Viveck R. ; Mazumdar, Arya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binary codes</topic><topic>Codes</topic><topic>Coding</topic><topic>Concatenated codes</topic><topic>Constants</topic><topic>Information theory</topic><topic>Linear codes</topic><topic>Maintenance engineering</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parity check codes</topic><topic>Symbols</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadambe, Viveck R.</creatorcontrib><creatorcontrib>Mazumdar, Arya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadambe, Viveck R.</au><au>Mazumdar, Arya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds on the Size of Locally Recoverable Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-11</date><risdate>2015</risdate><volume>61</volume><issue>11</issue><spage>5787</spage><epage>5794</epage><pages>5787-5794</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2477406</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-11, Vol.61 (11), p.5787-5794 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1728001605 |
source | IEEE Xplore (Online service) |
subjects | Binary codes Codes Coding Concatenated codes Constants Information theory Linear codes Maintenance engineering Mathematical models Optimization Parity check codes Symbols Upper bound |
title | Bounds on the Size of Locally Recoverable Codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20on%20the%20Size%20of%20Locally%20Recoverable%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cadambe,%20Viveck%20R.&rft.date=2015-11&rft.volume=61&rft.issue=11&rft.spage=5787&rft.epage=5794&rft.pages=5787-5794&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2477406&rft_dat=%3Cproquest_ieee_%3E1816064156%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728001605&rft_id=info:pmid/&rft_ieee_id=7247728&rfr_iscdi=true |