Loading…

Bounds on the Size of Locally Recoverable Codes

In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (er...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2015-11, Vol.61 (11), p.5787-5794
Main Authors: Cadambe, Viveck R., Mazumdar, Arya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843
cites cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843
container_end_page 5794
container_issue 11
container_start_page 5787
container_title IEEE transactions on information theory
container_volume 61
creator Cadambe, Viveck R.
Mazumdar, Arya
description In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.
doi_str_mv 10.1109/TIT.2015.2477406
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1728001605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7247728</ieee_id><sourcerecordid>1816064156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5dtk2y-9qjFj0JB0HoOSXYWt2w3NekK9deb0uLB0zDM8w4zD0LXlEwoJdV0OV9OGKFiwrhSnMgTNKJCqKKSgp-iESFUFxXn-hxdpLTKLReUjdD0IQx9nXDo8fYT8Hv7Azg0eBG87bodfgMfviFa1wGehRrSJTprbJfg6ljH6OPpcTl7KRavz_PZ_aLwZUW2hZRMcWelEsJzaGpbORBOKsc1U3XjOLjGa9UIUeuq1Ln4inkmZU2lo5qXY3R32LuJ4WuAtDXrNnnoOttDGJKhmkoiORUyo7f_0FUYYp-vM1QxnV-VRGSKHCgfQ0oRGrOJ7drGnaHE7A2abNDsDZqjwRy5OURaAPjD1X7MdPkLt0Np-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728001605</pqid></control><display><type>article</type><title>Bounds on the Size of Locally Recoverable Codes</title><source>IEEE Xplore (Online service)</source><creator>Cadambe, Viveck R. ; Mazumdar, Arya</creator><creatorcontrib>Cadambe, Viveck R. ; Mazumdar, Arya</creatorcontrib><description>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2477406</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Codes ; Coding ; Concatenated codes ; Constants ; Information theory ; Linear codes ; Maintenance engineering ; Mathematical models ; Optimization ; Parity check codes ; Symbols ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2015-11, Vol.61 (11), p.5787-5794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</citedby><cites>FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7247728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Cadambe, Viveck R.</creatorcontrib><creatorcontrib>Mazumdar, Arya</creatorcontrib><title>Bounds on the Size of Locally Recoverable Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</description><subject>Binary codes</subject><subject>Codes</subject><subject>Coding</subject><subject>Concatenated codes</subject><subject>Constants</subject><subject>Information theory</subject><subject>Linear codes</subject><subject>Maintenance engineering</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parity check codes</subject><subject>Symbols</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5dtk2y-9qjFj0JB0HoOSXYWt2w3NekK9deb0uLB0zDM8w4zD0LXlEwoJdV0OV9OGKFiwrhSnMgTNKJCqKKSgp-iESFUFxXn-hxdpLTKLReUjdD0IQx9nXDo8fYT8Hv7Azg0eBG87bodfgMfviFa1wGehRrSJTprbJfg6ljH6OPpcTl7KRavz_PZ_aLwZUW2hZRMcWelEsJzaGpbORBOKsc1U3XjOLjGa9UIUeuq1Ln4inkmZU2lo5qXY3R32LuJ4WuAtDXrNnnoOttDGJKhmkoiORUyo7f_0FUYYp-vM1QxnV-VRGSKHCgfQ0oRGrOJ7drGnaHE7A2abNDsDZqjwRy5OURaAPjD1X7MdPkLt0Np-g</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Cadambe, Viveck R.</creator><creator>Mazumdar, Arya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>Bounds on the Size of Locally Recoverable Codes</title><author>Cadambe, Viveck R. ; Mazumdar, Arya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binary codes</topic><topic>Codes</topic><topic>Coding</topic><topic>Concatenated codes</topic><topic>Constants</topic><topic>Information theory</topic><topic>Linear codes</topic><topic>Maintenance engineering</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parity check codes</topic><topic>Symbols</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadambe, Viveck R.</creatorcontrib><creatorcontrib>Mazumdar, Arya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadambe, Viveck R.</au><au>Mazumdar, Arya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds on the Size of Locally Recoverable Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-11</date><risdate>2015</risdate><volume>61</volume><issue>11</issue><spage>5787</spage><epage>5794</epage><pages>5787-5794</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2477406</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-11, Vol.61 (11), p.5787-5794
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1728001605
source IEEE Xplore (Online service)
subjects Binary codes
Codes
Coding
Concatenated codes
Constants
Information theory
Linear codes
Maintenance engineering
Mathematical models
Optimization
Parity check codes
Symbols
Upper bound
title Bounds on the Size of Locally Recoverable Codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20on%20the%20Size%20of%20Locally%20Recoverable%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cadambe,%20Viveck%20R.&rft.date=2015-11&rft.volume=61&rft.issue=11&rft.spage=5787&rft.epage=5794&rft.pages=5787-5794&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2477406&rft_dat=%3Cproquest_ieee_%3E1816064156%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-66274ba6755c4efda9be5b67b4827dfb4ebfc87f55d893855dc92c266d16b1843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728001605&rft_id=info:pmid/&rft_ieee_id=7247728&rfr_iscdi=true