Loading…

Common-Mode Voltage Reduction of Three-Level Four-Leg PWM Converter

This paper presents a carrier-based pulsewidth modulation (PWM) method that reduces the common-mode voltage (CMV) of a three-level four-leg converter. Based on an analysis of space vector PWM (SVPWM) and sinusoidal-PWM switching patterns, the fourth-leg pole voltage of a three-phase converter, known...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2015-09, Vol.51 (5), p.4006-4016
Main Authors: Chee, Seung-Jun, Ko, Sanggi, Kim, Hyeon-Sik, Sul, Seung-Ki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a carrier-based pulsewidth modulation (PWM) method that reduces the common-mode voltage (CMV) of a three-level four-leg converter. Based on an analysis of space vector PWM (SVPWM) and sinusoidal-PWM switching patterns, the fourth-leg pole voltage of a three-phase converter, known as the "f pole voltage," is manipulated to reduce the CMV. To synthesize the f pole voltage for the suppression of the CMV, positive and negative pole voltage references of the f leg are calculated. In addition, the offset voltage to prevent distortion of the a, b, and c phase voltages regarding the neutral point is deduced. The proposed PWM strategy can be easily implemented in the software of a DSP-based converter control. The three-level four-leg converter with the proposed PWM algorithm results in a remarkable reduction in the peak-to-peak value of the CMV. From the simulation and the experimental results, the peak-to-peak value of the CMV when using the proposed PWM method is 33% compared to that when using the SVPWM method, while the number of CMV transitions during the switching period in the proposed PWM method is only 25% of that when using the SVPWM method.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2015.2422771