Loading…

A Statistically Rigorous Analysis of 2D Path-Planning Algorithms

Path-planning is a well-known studied problem in Artificial Intelligence. Given two points in a map, path-planning algorithms search for a path that joins those two points, avoiding obstacles. It is a challenging problem with important practical applications in a wide range of applications: autonomo...

Full description

Saved in:
Bibliographic Details
Published in:Computer journal 2015-11, Vol.58 (11), p.2876-2891
Main Authors: Muñoz, Pablo, Barrero, David F., R-Moreno, María D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c195t-e4e9dffecfb6f4becdad5db52e34dc46ca715e25f60a59e48597696bdeaad2fa3
cites
container_end_page 2891
container_issue 11
container_start_page 2876
container_title Computer journal
container_volume 58
creator Muñoz, Pablo
Barrero, David F.
R-Moreno, María D.
description Path-planning is a well-known studied problem in Artificial Intelligence. Given two points in a map, path-planning algorithms search for a path that joins those two points, avoiding obstacles. It is a challenging problem with important practical applications in a wide range of applications: autonomous mobile robotics, logistics or video games, just to mention some of them. Given its importance, it has attracted much research, resulting in a large number of algorithms, some classical, such as A*, other more specialized, such as swarms. However, despite all the literature dedicated to this problem, the statistics used to analyze experimental results in most cases are naive. In this paper, we position in favor of the need of incorporating stronger statistical methods in path-planning empirical research and promote a debate in the research community. To this end, we analyze some 2D-grid classical path-planning algorithms in discrete domains (i.e. A* and A* with post-processing) and more recent algorithms in continuous domains (i.e. Theta* and S-Theta*). Given the differences of these algorithms, we study them under different criteria: Run-time, number of heading changes, number of expanded vertices and path-length.
doi_str_mv 10.1093/comjnl/bxu137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1732313515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3862648901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-e4e9dffecfb6f4becdad5db52e34dc46ca715e25f60a59e48597696bdeaad2fa3</originalsourceid><addsrcrecordid>eNotkElLAzEARoMoWKtH7wHPsdnH3BzqCgWLyzlksrRT0kmdZMD591bG03d5fDweANcE3xKs2MKm_a6Li-ZnIKw6ATPCJUYUy-oUzDAmGHFJ8Tm4yHmHMaZYyRm4r-FHMaXNpbUmxhG-t5vUpyHDujNxzG2GKUD6ANembNE6mq5ruw2s45Fqy3afL8FZMDH7q_-dg6-nx8_lC1q9Pb8u6xWyRImCPPfKheBtaGTgjbfOOOEaQT3jznJpTUWEpyJIbITy_E6oSirZOG-Mo8GwObiZfg99-h58LnqXhv7omDWpGGWECSKOFJoo26ecex_0oW_3ph81wfovkp4i6SkS-wVtul2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732313515</pqid></control><display><type>article</type><title>A Statistically Rigorous Analysis of 2D Path-Planning Algorithms</title><source>Oxford Journals Online</source><creator>Muñoz, Pablo ; Barrero, David F. ; R-Moreno, María D.</creator><creatorcontrib>Muñoz, Pablo ; Barrero, David F. ; R-Moreno, María D.</creatorcontrib><description>Path-planning is a well-known studied problem in Artificial Intelligence. Given two points in a map, path-planning algorithms search for a path that joins those two points, avoiding obstacles. It is a challenging problem with important practical applications in a wide range of applications: autonomous mobile robotics, logistics or video games, just to mention some of them. Given its importance, it has attracted much research, resulting in a large number of algorithms, some classical, such as A*, other more specialized, such as swarms. However, despite all the literature dedicated to this problem, the statistics used to analyze experimental results in most cases are naive. In this paper, we position in favor of the need of incorporating stronger statistical methods in path-planning empirical research and promote a debate in the research community. To this end, we analyze some 2D-grid classical path-planning algorithms in discrete domains (i.e. A* and A* with post-processing) and more recent algorithms in continuous domains (i.e. Theta* and S-Theta*). Given the differences of these algorithms, we study them under different criteria: Run-time, number of heading changes, number of expanded vertices and path-length.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxu137</identifier><identifier>CODEN: CMPJAG</identifier><language>eng</language><publisher>Oxford: Oxford Publishing Limited (England)</publisher><subject>Algorithms ; Artificial intelligence ; Statistical methods</subject><ispartof>Computer journal, 2015-11, Vol.58 (11), p.2876-2891</ispartof><rights>Copyright Oxford Publishing Limited(England) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c195t-e4e9dffecfb6f4becdad5db52e34dc46ca715e25f60a59e48597696bdeaad2fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Muñoz, Pablo</creatorcontrib><creatorcontrib>Barrero, David F.</creatorcontrib><creatorcontrib>R-Moreno, María D.</creatorcontrib><title>A Statistically Rigorous Analysis of 2D Path-Planning Algorithms</title><title>Computer journal</title><description>Path-planning is a well-known studied problem in Artificial Intelligence. Given two points in a map, path-planning algorithms search for a path that joins those two points, avoiding obstacles. It is a challenging problem with important practical applications in a wide range of applications: autonomous mobile robotics, logistics or video games, just to mention some of them. Given its importance, it has attracted much research, resulting in a large number of algorithms, some classical, such as A*, other more specialized, such as swarms. However, despite all the literature dedicated to this problem, the statistics used to analyze experimental results in most cases are naive. In this paper, we position in favor of the need of incorporating stronger statistical methods in path-planning empirical research and promote a debate in the research community. To this end, we analyze some 2D-grid classical path-planning algorithms in discrete domains (i.e. A* and A* with post-processing) and more recent algorithms in continuous domains (i.e. Theta* and S-Theta*). Given the differences of these algorithms, we study them under different criteria: Run-time, number of heading changes, number of expanded vertices and path-length.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Statistical methods</subject><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkElLAzEARoMoWKtH7wHPsdnH3BzqCgWLyzlksrRT0kmdZMD591bG03d5fDweANcE3xKs2MKm_a6Li-ZnIKw6ATPCJUYUy-oUzDAmGHFJ8Tm4yHmHMaZYyRm4r-FHMaXNpbUmxhG-t5vUpyHDujNxzG2GKUD6ANembNE6mq5ruw2s45Fqy3afL8FZMDH7q_-dg6-nx8_lC1q9Pb8u6xWyRImCPPfKheBtaGTgjbfOOOEaQT3jznJpTUWEpyJIbITy_E6oSirZOG-Mo8GwObiZfg99-h58LnqXhv7omDWpGGWECSKOFJoo26ecex_0oW_3ph81wfovkp4i6SkS-wVtul2-</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Muñoz, Pablo</creator><creator>Barrero, David F.</creator><creator>R-Moreno, María D.</creator><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201511</creationdate><title>A Statistically Rigorous Analysis of 2D Path-Planning Algorithms</title><author>Muñoz, Pablo ; Barrero, David F. ; R-Moreno, María D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-e4e9dffecfb6f4becdad5db52e34dc46ca715e25f60a59e48597696bdeaad2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz, Pablo</creatorcontrib><creatorcontrib>Barrero, David F.</creatorcontrib><creatorcontrib>R-Moreno, María D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz, Pablo</au><au>Barrero, David F.</au><au>R-Moreno, María D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistically Rigorous Analysis of 2D Path-Planning Algorithms</atitle><jtitle>Computer journal</jtitle><date>2015-11</date><risdate>2015</risdate><volume>58</volume><issue>11</issue><spage>2876</spage><epage>2891</epage><pages>2876-2891</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><coden>CMPJAG</coden><abstract>Path-planning is a well-known studied problem in Artificial Intelligence. Given two points in a map, path-planning algorithms search for a path that joins those two points, avoiding obstacles. It is a challenging problem with important practical applications in a wide range of applications: autonomous mobile robotics, logistics or video games, just to mention some of them. Given its importance, it has attracted much research, resulting in a large number of algorithms, some classical, such as A*, other more specialized, such as swarms. However, despite all the literature dedicated to this problem, the statistics used to analyze experimental results in most cases are naive. In this paper, we position in favor of the need of incorporating stronger statistical methods in path-planning empirical research and promote a debate in the research community. To this end, we analyze some 2D-grid classical path-planning algorithms in discrete domains (i.e. A* and A* with post-processing) and more recent algorithms in continuous domains (i.e. Theta* and S-Theta*). Given the differences of these algorithms, we study them under different criteria: Run-time, number of heading changes, number of expanded vertices and path-length.</abstract><cop>Oxford</cop><pub>Oxford Publishing Limited (England)</pub><doi>10.1093/comjnl/bxu137</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2015-11, Vol.58 (11), p.2876-2891
issn 0010-4620
1460-2067
language eng
recordid cdi_proquest_journals_1732313515
source Oxford Journals Online
subjects Algorithms
Artificial intelligence
Statistical methods
title A Statistically Rigorous Analysis of 2D Path-Planning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistically%20Rigorous%20Analysis%20of%202D%20Path-Planning%20Algorithms&rft.jtitle=Computer%20journal&rft.au=Mu%C3%B1oz,%20Pablo&rft.date=2015-11&rft.volume=58&rft.issue=11&rft.spage=2876&rft.epage=2891&rft.pages=2876-2891&rft.issn=0010-4620&rft.eissn=1460-2067&rft.coden=CMPJAG&rft_id=info:doi/10.1093/comjnl/bxu137&rft_dat=%3Cproquest_cross%3E3862648901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-e4e9dffecfb6f4becdad5db52e34dc46ca715e25f60a59e48597696bdeaad2fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732313515&rft_id=info:pmid/&rfr_iscdi=true