Loading…

Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2  >> CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West...

Full description

Saved in:
Bibliographic Details
Published in:Mineralium deposita 2015-12, Vol.50 (8), p.967-986
Main Authors: Shen, Ping, Pan, HongDi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483
cites cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483
container_end_page 986
container_issue 8
container_start_page 967
container_title Mineralium deposita
container_volume 50
creator Shen, Ping
Pan, HongDi
description Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2  >> CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH 4  >> CO 2 that are indicative of low f O 2 . The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ 13 Cv PDB values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ 13 Cv PDB values of CH 4 (−28.2 to −36.0 ‰) and CO 2 (−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ 13 C CO2-CH4 values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH 4 . Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log f O 2  > FMQ + 1 in the magma stage, to log f O 2   FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its f O 2 such that exsolved fluids contained abundant CH 4 and deposited a reduced assemblage of minerals.
doi_str_mv 10.1007/s00126-015-0580-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1732534728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3863233881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</originalsourceid><addsrcrecordid>eNp1kLlOxDAURS0EEsPyAXSWaAk8b4lTwohVIBoQpeVM7ExGgx28IMLXk9FQ0FC5eOfe53cQOiFwTgCqiwhAaFkAEQUICYXYQTPCGS2ILMtdNAOYplzUch8dxLgCgJpwmKHvJ5OW2hnsQ9_1DmvXYv81dsYVNnd60acRm0-_zqn3DnuL09LgK-27nDIOps0L0-LBh2E5hhHPM27N4GOf8NS1Qd9MTPghu67TAScTgu7dGZ4ve6eP0J7V62iOf99D9Hpz_TK_Kx6fb-_nl4-F5lCnohENs40pbUNZqQmpW0pLUk1XN42UtBKclBysraSRlWzqVhjOhG0WmvGWcckO0em2dwj-I0__USufg5tWKlIxKhiv6IYiW2oRfIzBWDWE_l2HURFQG8Vqq1hNitVGsRJThm4zcWJdZ8Kf5n9DP7crfzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732534728</pqid></control><display><type>article</type><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><source>Springer Link</source><creator>Shen, Ping ; Pan, HongDi</creator><creatorcontrib>Shen, Ping ; Pan, HongDi</creatorcontrib><description>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2  &gt;&gt; CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH 4  &gt;&gt; CO 2 that are indicative of low f O 2 . The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ 13 Cv PDB values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ 13 Cv PDB values of CH 4 (−28.2 to −36.0 ‰) and CO 2 (−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ 13 C CO2-CH4 values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH 4 . Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log f O 2  &gt; FMQ + 1 in the magma stage, to log f O 2  &lt; FMQ as a consequence of country rocks assimilation-contamination, to log f O 2  &gt; FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its f O 2 such that exsolved fluids contained abundant CH 4 and deposited a reduced assemblage of minerals.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-015-0580-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon dioxide ; Carbon sources ; Contamination ; Copper ; Crystallization ; Dikes ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; Geology ; High temperature ; Iron sulfides ; Magma ; Methane ; Mineral composition ; Mineral Resources ; Mineralization ; Mineralogy ; Organic carbon ; Rocks</subject><ispartof>Mineralium deposita, 2015-12, Vol.50 (8), p.967-986</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</citedby><cites>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shen, Ping</creatorcontrib><creatorcontrib>Pan, HongDi</creatorcontrib><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2  &gt;&gt; CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH 4  &gt;&gt; CO 2 that are indicative of low f O 2 . The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ 13 Cv PDB values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ 13 Cv PDB values of CH 4 (−28.2 to −36.0 ‰) and CO 2 (−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ 13 C CO2-CH4 values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH 4 . Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log f O 2  &gt; FMQ + 1 in the magma stage, to log f O 2  &lt; FMQ as a consequence of country rocks assimilation-contamination, to log f O 2  &gt; FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its f O 2 such that exsolved fluids contained abundant CH 4 and deposited a reduced assemblage of minerals.</description><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Contamination</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Dikes</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>High temperature</subject><subject>Iron sulfides</subject><subject>Magma</subject><subject>Methane</subject><subject>Mineral composition</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Organic carbon</subject><subject>Rocks</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOxDAURS0EEsPyAXSWaAk8b4lTwohVIBoQpeVM7ExGgx28IMLXk9FQ0FC5eOfe53cQOiFwTgCqiwhAaFkAEQUICYXYQTPCGS2ILMtdNAOYplzUch8dxLgCgJpwmKHvJ5OW2hnsQ9_1DmvXYv81dsYVNnd60acRm0-_zqn3DnuL09LgK-27nDIOps0L0-LBh2E5hhHPM27N4GOf8NS1Qd9MTPghu67TAScTgu7dGZ4ve6eP0J7V62iOf99D9Hpz_TK_Kx6fb-_nl4-F5lCnohENs40pbUNZqQmpW0pLUk1XN42UtBKclBysraSRlWzqVhjOhG0WmvGWcckO0em2dwj-I0__USufg5tWKlIxKhiv6IYiW2oRfIzBWDWE_l2HURFQG8Vqq1hNitVGsRJThm4zcWJdZ8Kf5n9DP7crfzg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Shen, Ping</creator><creator>Pan, HongDi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><author>Shen, Ping ; Pan, HongDi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Contamination</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Dikes</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>High temperature</topic><topic>Iron sulfides</topic><topic>Magma</topic><topic>Methane</topic><topic>Mineral composition</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Organic carbon</topic><topic>Rocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Ping</creatorcontrib><creatorcontrib>Pan, HongDi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Ping</au><au>Pan, HongDi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>50</volume><issue>8</issue><spage>967</spage><epage>986</epage><pages>967-986</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2  &gt;&gt; CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH 4  &gt;&gt; CO 2 that are indicative of low f O 2 . The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ 13 Cv PDB values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ 13 Cv PDB values of CH 4 (−28.2 to −36.0 ‰) and CO 2 (−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ 13 C CO2-CH4 values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH 4 . Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log f O 2  &gt; FMQ + 1 in the magma stage, to log f O 2  &lt; FMQ as a consequence of country rocks assimilation-contamination, to log f O 2  &gt; FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its f O 2 such that exsolved fluids contained abundant CH 4 and deposited a reduced assemblage of minerals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-015-0580-5</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2015-12, Vol.50 (8), p.967-986
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_1732534728
source Springer Link
subjects Carbon dioxide
Carbon sources
Contamination
Copper
Crystallization
Dikes
Earth and Environmental Science
Earth Sciences
Geochemistry
Geology
High temperature
Iron sulfides
Magma
Methane
Mineral composition
Mineral Resources
Mineralization
Mineralogy
Organic carbon
Rocks
title Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20origin%20and%20oxygen-fugacity%20evolution%20of%20the%20Baogutu%20reduced%20porphyry%20Cu%20deposit%20in%20the%20West%20Junggar%20terrain,%20China&rft.jtitle=Mineralium%20deposita&rft.au=Shen,%20Ping&rft.date=2015-12-01&rft.volume=50&rft.issue=8&rft.spage=967&rft.epage=986&rft.pages=967-986&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-015-0580-5&rft_dat=%3Cproquest_cross%3E3863233881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732534728&rft_id=info:pmid/&rfr_iscdi=true