Loading…
Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China
Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO 2 >> CH 4 that are indicative of high f O 2 . In contrast, the Baogutu porphyry Cu deposit in the West...
Saved in:
Published in: | Mineralium deposita 2015-12, Vol.50 (8), p.967-986 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483 |
---|---|
cites | cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483 |
container_end_page | 986 |
container_issue | 8 |
container_start_page | 967 |
container_title | Mineralium deposita |
container_volume | 50 |
creator | Shen, Ping Pan, HongDi |
description | Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO
2
>> CH
4
that are indicative of high
f
O
2
. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH
4
>> CO
2
that are indicative of low
f
O
2
. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ
13
Cv
PDB
values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ
13
Cv
PDB
values of CH
4
(−28.2 to −36.0 ‰) and CO
2
(−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ
13
C
CO2-CH4
values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH
4
. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log
f
O
2
> FMQ + 1 in the magma stage, to log
f
O
2
FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its
f
O
2
such that exsolved fluids contained abundant CH
4
and deposited a reduced assemblage of minerals. |
doi_str_mv | 10.1007/s00126-015-0580-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1732534728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3863233881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</originalsourceid><addsrcrecordid>eNp1kLlOxDAURS0EEsPyAXSWaAk8b4lTwohVIBoQpeVM7ExGgx28IMLXk9FQ0FC5eOfe53cQOiFwTgCqiwhAaFkAEQUICYXYQTPCGS2ILMtdNAOYplzUch8dxLgCgJpwmKHvJ5OW2hnsQ9_1DmvXYv81dsYVNnd60acRm0-_zqn3DnuL09LgK-27nDIOps0L0-LBh2E5hhHPM27N4GOf8NS1Qd9MTPghu67TAScTgu7dGZ4ve6eP0J7V62iOf99D9Hpz_TK_Kx6fb-_nl4-F5lCnohENs40pbUNZqQmpW0pLUk1XN42UtBKclBysraSRlWzqVhjOhG0WmvGWcckO0em2dwj-I0__USufg5tWKlIxKhiv6IYiW2oRfIzBWDWE_l2HURFQG8Vqq1hNitVGsRJThm4zcWJdZ8Kf5n9DP7crfzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732534728</pqid></control><display><type>article</type><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><source>Springer Link</source><creator>Shen, Ping ; Pan, HongDi</creator><creatorcontrib>Shen, Ping ; Pan, HongDi</creatorcontrib><description>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO
2
>> CH
4
that are indicative of high
f
O
2
. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH
4
>> CO
2
that are indicative of low
f
O
2
. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ
13
Cv
PDB
values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ
13
Cv
PDB
values of CH
4
(−28.2 to −36.0 ‰) and CO
2
(−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ
13
C
CO2-CH4
values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH
4
. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log
f
O
2
> FMQ + 1 in the magma stage, to log
f
O
2
< FMQ as a consequence of country rocks assimilation-contamination, to log
f
O
2
> FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its
f
O
2
such that exsolved fluids contained abundant CH
4
and deposited a reduced assemblage of minerals.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-015-0580-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon dioxide ; Carbon sources ; Contamination ; Copper ; Crystallization ; Dikes ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; Geology ; High temperature ; Iron sulfides ; Magma ; Methane ; Mineral composition ; Mineral Resources ; Mineralization ; Mineralogy ; Organic carbon ; Rocks</subject><ispartof>Mineralium deposita, 2015-12, Vol.50 (8), p.967-986</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</citedby><cites>FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shen, Ping</creatorcontrib><creatorcontrib>Pan, HongDi</creatorcontrib><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO
2
>> CH
4
that are indicative of high
f
O
2
. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH
4
>> CO
2
that are indicative of low
f
O
2
. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ
13
Cv
PDB
values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ
13
Cv
PDB
values of CH
4
(−28.2 to −36.0 ‰) and CO
2
(−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ
13
C
CO2-CH4
values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH
4
. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log
f
O
2
> FMQ + 1 in the magma stage, to log
f
O
2
< FMQ as a consequence of country rocks assimilation-contamination, to log
f
O
2
> FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its
f
O
2
such that exsolved fluids contained abundant CH
4
and deposited a reduced assemblage of minerals.</description><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Contamination</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Dikes</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>High temperature</subject><subject>Iron sulfides</subject><subject>Magma</subject><subject>Methane</subject><subject>Mineral composition</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Organic carbon</subject><subject>Rocks</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOxDAURS0EEsPyAXSWaAk8b4lTwohVIBoQpeVM7ExGgx28IMLXk9FQ0FC5eOfe53cQOiFwTgCqiwhAaFkAEQUICYXYQTPCGS2ILMtdNAOYplzUch8dxLgCgJpwmKHvJ5OW2hnsQ9_1DmvXYv81dsYVNnd60acRm0-_zqn3DnuL09LgK-27nDIOps0L0-LBh2E5hhHPM27N4GOf8NS1Qd9MTPghu67TAScTgu7dGZ4ve6eP0J7V62iOf99D9Hpz_TK_Kx6fb-_nl4-F5lCnohENs40pbUNZqQmpW0pLUk1XN42UtBKclBysraSRlWzqVhjOhG0WmvGWcckO0em2dwj-I0__USufg5tWKlIxKhiv6IYiW2oRfIzBWDWE_l2HURFQG8Vqq1hNitVGsRJThm4zcWJdZ8Kf5n9DP7crfzg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Shen, Ping</creator><creator>Pan, HongDi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</title><author>Shen, Ping ; Pan, HongDi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Contamination</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Dikes</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>High temperature</topic><topic>Iron sulfides</topic><topic>Magma</topic><topic>Methane</topic><topic>Mineral composition</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Organic carbon</topic><topic>Rocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Ping</creatorcontrib><creatorcontrib>Pan, HongDi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Ping</au><au>Pan, HongDi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>50</volume><issue>8</issue><spage>967</spage><epage>986</epage><pages>967-986</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO
2
>> CH
4
that are indicative of high
f
O
2
. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH
4
>> CO
2
that are indicative of low
f
O
2
. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ
13
Cv
PDB
values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ
13
Cv
PDB
values of CH
4
(−28.2 to −36.0 ‰) and CO
2
(−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ
13
C
CO2-CH4
values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH
4
. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log
f
O
2
> FMQ + 1 in the magma stage, to log
f
O
2
< FMQ as a consequence of country rocks assimilation-contamination, to log
f
O
2
> FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its
f
O
2
such that exsolved fluids contained abundant CH
4
and deposited a reduced assemblage of minerals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-015-0580-5</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2015-12, Vol.50 (8), p.967-986 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_1732534728 |
source | Springer Link |
subjects | Carbon dioxide Carbon sources Contamination Copper Crystallization Dikes Earth and Environmental Science Earth Sciences Geochemistry Geology High temperature Iron sulfides Magma Methane Mineral composition Mineral Resources Mineralization Mineralogy Organic carbon Rocks |
title | Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20origin%20and%20oxygen-fugacity%20evolution%20of%20the%20Baogutu%20reduced%20porphyry%20Cu%20deposit%20in%20the%20West%20Junggar%20terrain,%20China&rft.jtitle=Mineralium%20deposita&rft.au=Shen,%20Ping&rft.date=2015-12-01&rft.volume=50&rft.issue=8&rft.spage=967&rft.epage=986&rft.pages=967-986&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-015-0580-5&rft_dat=%3Cproquest_cross%3E3863233881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a409t-b5b3fbe6fb236a119d22617100bb8827541640ff78e878b9d5e435fbca34d3483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732534728&rft_id=info:pmid/&rfr_iscdi=true |