Loading…

Customer-base analysis using repeated cross-sectional summary (RCSS) data

•We conduct customer base analysis using summaries of individual-level data.•We use repeated cross-sectional summaries (RCSS), e.g., quarterly histograms.•RCSS are easy to create, visualize, and distribute, and preserve privacy•Four quarterly histograms are a good substitute for individual-level dat...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2016-02, Vol.249 (1), p.340-350
Main Authors: Jerath, Kinshuk, Fader, Peter S., Hardie, Bruce G.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773
cites cdi_FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773
container_end_page 350
container_issue 1
container_start_page 340
container_title European journal of operational research
container_volume 249
creator Jerath, Kinshuk
Fader, Peter S.
Hardie, Bruce G.S.
description •We conduct customer base analysis using summaries of individual-level data.•We use repeated cross-sectional summaries (RCSS), e.g., quarterly histograms.•RCSS are easy to create, visualize, and distribute, and preserve privacy•Four quarterly histograms are a good substitute for individual-level data. We address a critical question that many firms are facing today: Can customer data be stored and analyzed in an easy-to-manage and scalable manner without significantly compromising the inferences that can be made about the customers’ transaction activity? We address this question in the context of customer-base analysis. A number of researchers have developed customer-base analysis models that perform very well given detailed individual-level data. We explore the possibility of estimating these models using aggregated data summaries alone, namely repeated cross-sectional summaries (RCSS) of the transaction data. Such summaries are easy to create, visualize, and distribute, irrespective of the size of the customer base. An added advantage of the RCSS data structure is that individual customers cannot be identified, which makes it desirable from a data privacy and security viewpoint as well. We focus on the widely used Pareto/NBD model and carry out a comprehensive simulation study covering a vast spectrum of market scenarios. We find that the RCSS format of four quarterly histograms serves as a suitable substitute for individual-level data. We confirm the results of the simulations on a real dataset of purchasing from an online fashion retailer.
doi_str_mv 10.1016/j.ejor.2015.09.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1733197673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221715008231</els_id><sourcerecordid>3867155291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcFN7pofS_tJA24keLHwIDg6DqkSSopzmRMWmH-vanj2tXd3Ps47xByiVAgILvtC9v7UFDARQGiAKBHZIY1pzmrGRyTGZSc55QiPyVnMfYAqYmLGVk2Yxz8xoa8VdFmaqs-99HFbIxu-5EFu7NqsCbTwceYR6sH51Mli-Nmo8I-u35t1uubzKhBnZOTTn1Ge_GXc_L--PDWPOerl6dlc7_KdYWLIS87JirGFE2szNS6blnXVQhguKiA6g6oMoKxShsh2gqAM4aVrkveIiLn5ZxcHe7ugv8abRxk78eQoKJEXpYoOEsxJ_TQ-iUPtpO74CZkiSAnZbKXkzI5KZMgZFKWRneHkU38384GGbWzW22NC-l1abz7b_4D5fpy-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733197673</pqid></control><display><type>article</type><title>Customer-base analysis using repeated cross-sectional summary (RCSS) data</title><source>ScienceDirect Freedom Collection</source><creator>Jerath, Kinshuk ; Fader, Peter S. ; Hardie, Bruce G.S.</creator><creatorcontrib>Jerath, Kinshuk ; Fader, Peter S. ; Hardie, Bruce G.S.</creatorcontrib><description>•We conduct customer base analysis using summaries of individual-level data.•We use repeated cross-sectional summaries (RCSS), e.g., quarterly histograms.•RCSS are easy to create, visualize, and distribute, and preserve privacy•Four quarterly histograms are a good substitute for individual-level data. We address a critical question that many firms are facing today: Can customer data be stored and analyzed in an easy-to-manage and scalable manner without significantly compromising the inferences that can be made about the customers’ transaction activity? We address this question in the context of customer-base analysis. A number of researchers have developed customer-base analysis models that perform very well given detailed individual-level data. We explore the possibility of estimating these models using aggregated data summaries alone, namely repeated cross-sectional summaries (RCSS) of the transaction data. Such summaries are easy to create, visualize, and distribute, irrespective of the size of the customer base. An added advantage of the RCSS data structure is that individual customers cannot be identified, which makes it desirable from a data privacy and security viewpoint as well. We focus on the widely used Pareto/NBD model and carry out a comprehensive simulation study covering a vast spectrum of market scenarios. We find that the RCSS format of four quarterly histograms serves as a suitable substitute for individual-level data. We confirm the results of the simulations on a real dataset of purchasing from an online fashion retailer.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2015.09.002</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Customer-base analysis ; Data aggregation ; Data analysis ; Data privacy and security ; Estimating techniques ; Histograms ; Information loss ; Information storage ; Privacy ; Probability models ; Studies</subject><ispartof>European journal of operational research, 2016-02, Vol.249 (1), p.340-350</ispartof><rights>2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS)</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773</citedby><cites>FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773</cites><orcidid>0000-0003-0732-5863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jerath, Kinshuk</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G.S.</creatorcontrib><title>Customer-base analysis using repeated cross-sectional summary (RCSS) data</title><title>European journal of operational research</title><description>•We conduct customer base analysis using summaries of individual-level data.•We use repeated cross-sectional summaries (RCSS), e.g., quarterly histograms.•RCSS are easy to create, visualize, and distribute, and preserve privacy•Four quarterly histograms are a good substitute for individual-level data. We address a critical question that many firms are facing today: Can customer data be stored and analyzed in an easy-to-manage and scalable manner without significantly compromising the inferences that can be made about the customers’ transaction activity? We address this question in the context of customer-base analysis. A number of researchers have developed customer-base analysis models that perform very well given detailed individual-level data. We explore the possibility of estimating these models using aggregated data summaries alone, namely repeated cross-sectional summaries (RCSS) of the transaction data. Such summaries are easy to create, visualize, and distribute, irrespective of the size of the customer base. An added advantage of the RCSS data structure is that individual customers cannot be identified, which makes it desirable from a data privacy and security viewpoint as well. We focus on the widely used Pareto/NBD model and carry out a comprehensive simulation study covering a vast spectrum of market scenarios. We find that the RCSS format of four quarterly histograms serves as a suitable substitute for individual-level data. We confirm the results of the simulations on a real dataset of purchasing from an online fashion retailer.</description><subject>Customer-base analysis</subject><subject>Data aggregation</subject><subject>Data analysis</subject><subject>Data privacy and security</subject><subject>Estimating techniques</subject><subject>Histograms</subject><subject>Information loss</subject><subject>Information storage</subject><subject>Privacy</subject><subject>Probability models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcFN7pofS_tJA24keLHwIDg6DqkSSopzmRMWmH-vanj2tXd3Ps47xByiVAgILvtC9v7UFDARQGiAKBHZIY1pzmrGRyTGZSc55QiPyVnMfYAqYmLGVk2Yxz8xoa8VdFmaqs-99HFbIxu-5EFu7NqsCbTwceYR6sH51Mli-Nmo8I-u35t1uubzKhBnZOTTn1Ge_GXc_L--PDWPOerl6dlc7_KdYWLIS87JirGFE2szNS6blnXVQhguKiA6g6oMoKxShsh2gqAM4aVrkveIiLn5ZxcHe7ugv8abRxk78eQoKJEXpYoOEsxJ_TQ-iUPtpO74CZkiSAnZbKXkzI5KZMgZFKWRneHkU38384GGbWzW22NC-l1abz7b_4D5fpy-Q</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Jerath, Kinshuk</creator><creator>Fader, Peter S.</creator><creator>Hardie, Bruce G.S.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0732-5863</orcidid></search><sort><creationdate>20160216</creationdate><title>Customer-base analysis using repeated cross-sectional summary (RCSS) data</title><author>Jerath, Kinshuk ; Fader, Peter S. ; Hardie, Bruce G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Customer-base analysis</topic><topic>Data aggregation</topic><topic>Data analysis</topic><topic>Data privacy and security</topic><topic>Estimating techniques</topic><topic>Histograms</topic><topic>Information loss</topic><topic>Information storage</topic><topic>Privacy</topic><topic>Probability models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerath, Kinshuk</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerath, Kinshuk</au><au>Fader, Peter S.</au><au>Hardie, Bruce G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customer-base analysis using repeated cross-sectional summary (RCSS) data</atitle><jtitle>European journal of operational research</jtitle><date>2016-02-16</date><risdate>2016</risdate><volume>249</volume><issue>1</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•We conduct customer base analysis using summaries of individual-level data.•We use repeated cross-sectional summaries (RCSS), e.g., quarterly histograms.•RCSS are easy to create, visualize, and distribute, and preserve privacy•Four quarterly histograms are a good substitute for individual-level data. We address a critical question that many firms are facing today: Can customer data be stored and analyzed in an easy-to-manage and scalable manner without significantly compromising the inferences that can be made about the customers’ transaction activity? We address this question in the context of customer-base analysis. A number of researchers have developed customer-base analysis models that perform very well given detailed individual-level data. We explore the possibility of estimating these models using aggregated data summaries alone, namely repeated cross-sectional summaries (RCSS) of the transaction data. Such summaries are easy to create, visualize, and distribute, irrespective of the size of the customer base. An added advantage of the RCSS data structure is that individual customers cannot be identified, which makes it desirable from a data privacy and security viewpoint as well. We focus on the widely used Pareto/NBD model and carry out a comprehensive simulation study covering a vast spectrum of market scenarios. We find that the RCSS format of four quarterly histograms serves as a suitable substitute for individual-level data. We confirm the results of the simulations on a real dataset of purchasing from an online fashion retailer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2015.09.002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0732-5863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2016-02, Vol.249 (1), p.340-350
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_1733197673
source ScienceDirect Freedom Collection
subjects Customer-base analysis
Data aggregation
Data analysis
Data privacy and security
Estimating techniques
Histograms
Information loss
Information storage
Privacy
Probability models
Studies
title Customer-base analysis using repeated cross-sectional summary (RCSS) data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customer-base%20analysis%20using%20repeated%20cross-sectional%20summary%20(RCSS)%20data&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Jerath,%20Kinshuk&rft.date=2016-02-16&rft.volume=249&rft.issue=1&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2015.09.002&rft_dat=%3Cproquest_cross%3E3867155291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-3f69466a22016d8c8b6ff4100d79402cf02ad9664cd99b40076614c837b111773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1733197673&rft_id=info:pmid/&rfr_iscdi=true