Loading…
Molecular cluster perturbation theory. I. Formalism
We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and...
Saved in:
Published in: | Molecular physics 2015-11, Vol.113 (22), p.3459-3470 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623 |
container_end_page | 3470 |
container_issue | 22 |
container_start_page | 3459 |
container_title | Molecular physics |
container_volume | 113 |
creator | Byrd, Jason N. Jindal, Nakul Molt, Robert W. Bartlett, Rodney J. Sanders, Beverly A. Lotrich, Victor F. |
description | We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature. |
doi_str_mv | 10.1080/00268976.2015.1036145 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1733939572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3869362951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_ghDwnDj7ndyUYrVQ8aLnZTfuYkqarbMbpP_ehtarp4Hhed9hHkJuKVQUargHYKputKoYUHlYcUWFPCMzyhUrObD6nMwmppygS3KV0gYAFFCYEf4ae9-OvcWi7ceUPRY7j3lEZ3MXhyJ_-Yj7qlhVxTLi1vZd2l6Ti2D75G9Oc04-lk_vi5dy_fa8Wjyuy1ZAnUvnhdS2aaxzklHmKNMCGggMaq-Z5MCDFZq2gnkevGPaMkWZrb0DK6hifE7ujr07jN-jT9ls4ojD4aShmvOGN1JPlDxSLcaU0Aezw25rcW8omMmP-fNjJj_m5OeQezjmuiFMn_1E7D9Ntvs-YkA7tF0y_P-KX_28ajg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733939572</pqid></control><display><type>article</type><title>Molecular cluster perturbation theory. I. Formalism</title><source>Taylor and Francis Science and Technology Collection</source><creator>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</creator><creatorcontrib>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</creatorcontrib><description>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2015.1036145</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>coupled-cluster perturbation theory ; molecular crystals ; self-consistent embedding theory</subject><ispartof>Molecular physics, 2015-11, Vol.113 (22), p.3459-3470</ispartof><rights>2015 Taylor & Francis 2015</rights><rights>2015 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</citedby><cites>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</cites><orcidid>0000-0001-5837-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Byrd, Jason N.</creatorcontrib><creatorcontrib>Jindal, Nakul</creatorcontrib><creatorcontrib>Molt, Robert W.</creatorcontrib><creatorcontrib>Bartlett, Rodney J.</creatorcontrib><creatorcontrib>Sanders, Beverly A.</creatorcontrib><creatorcontrib>Lotrich, Victor F.</creatorcontrib><title>Molecular cluster perturbation theory. I. Formalism</title><title>Molecular physics</title><description>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</description><subject>coupled-cluster perturbation theory</subject><subject>molecular crystals</subject><subject>self-consistent embedding theory</subject><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_ghDwnDj7ndyUYrVQ8aLnZTfuYkqarbMbpP_ehtarp4Hhed9hHkJuKVQUargHYKputKoYUHlYcUWFPCMzyhUrObD6nMwmppygS3KV0gYAFFCYEf4ae9-OvcWi7ceUPRY7j3lEZ3MXhyJ_-Yj7qlhVxTLi1vZd2l6Ti2D75G9Oc04-lk_vi5dy_fa8Wjyuy1ZAnUvnhdS2aaxzklHmKNMCGggMaq-Z5MCDFZq2gnkevGPaMkWZrb0DK6hifE7ujr07jN-jT9ls4ojD4aShmvOGN1JPlDxSLcaU0Aezw25rcW8omMmP-fNjJj_m5OeQezjmuiFMn_1E7D9Ntvs-YkA7tF0y_P-KX_28ajg</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Byrd, Jason N.</creator><creator>Jindal, Nakul</creator><creator>Molt, Robert W.</creator><creator>Bartlett, Rodney J.</creator><creator>Sanders, Beverly A.</creator><creator>Lotrich, Victor F.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5837-6316</orcidid></search><sort><creationdate>20151117</creationdate><title>Molecular cluster perturbation theory. I. Formalism</title><author>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>coupled-cluster perturbation theory</topic><topic>molecular crystals</topic><topic>self-consistent embedding theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrd, Jason N.</creatorcontrib><creatorcontrib>Jindal, Nakul</creatorcontrib><creatorcontrib>Molt, Robert W.</creatorcontrib><creatorcontrib>Bartlett, Rodney J.</creatorcontrib><creatorcontrib>Sanders, Beverly A.</creatorcontrib><creatorcontrib>Lotrich, Victor F.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrd, Jason N.</au><au>Jindal, Nakul</au><au>Molt, Robert W.</au><au>Bartlett, Rodney J.</au><au>Sanders, Beverly A.</au><au>Lotrich, Victor F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cluster perturbation theory. I. Formalism</atitle><jtitle>Molecular physics</jtitle><date>2015-11-17</date><risdate>2015</risdate><volume>113</volume><issue>22</issue><spage>3459</spage><epage>3470</epage><pages>3459-3470</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00268976.2015.1036145</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5837-6316</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-8976 |
ispartof | Molecular physics, 2015-11, Vol.113 (22), p.3459-3470 |
issn | 0026-8976 1362-3028 |
language | eng |
recordid | cdi_proquest_journals_1733939572 |
source | Taylor and Francis Science and Technology Collection |
subjects | coupled-cluster perturbation theory molecular crystals self-consistent embedding theory |
title | Molecular cluster perturbation theory. I. Formalism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cluster%20perturbation%20theory.%20I.%20Formalism&rft.jtitle=Molecular%20physics&rft.au=Byrd,%20Jason%20N.&rft.date=2015-11-17&rft.volume=113&rft.issue=22&rft.spage=3459&rft.epage=3470&rft.pages=3459-3470&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2015.1036145&rft_dat=%3Cproquest_infor%3E3869362951%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1733939572&rft_id=info:pmid/&rfr_iscdi=true |