Loading…

Molecular cluster perturbation theory. I. Formalism

We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and...

Full description

Saved in:
Bibliographic Details
Published in:Molecular physics 2015-11, Vol.113 (22), p.3459-3470
Main Authors: Byrd, Jason N., Jindal, Nakul, Molt, Robert W., Bartlett, Rodney J., Sanders, Beverly A., Lotrich, Victor F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623
cites cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623
container_end_page 3470
container_issue 22
container_start_page 3459
container_title Molecular physics
container_volume 113
creator Byrd, Jason N.
Jindal, Nakul
Molt, Robert W.
Bartlett, Rodney J.
Sanders, Beverly A.
Lotrich, Victor F.
description We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.
doi_str_mv 10.1080/00268976.2015.1036145
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1733939572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3869362951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_ghDwnDj7ndyUYrVQ8aLnZTfuYkqarbMbpP_ehtarp4Hhed9hHkJuKVQUargHYKputKoYUHlYcUWFPCMzyhUrObD6nMwmppygS3KV0gYAFFCYEf4ae9-OvcWi7ceUPRY7j3lEZ3MXhyJ_-Yj7qlhVxTLi1vZd2l6Ti2D75G9Oc04-lk_vi5dy_fa8Wjyuy1ZAnUvnhdS2aaxzklHmKNMCGggMaq-Z5MCDFZq2gnkevGPaMkWZrb0DK6hifE7ujr07jN-jT9ls4ojD4aShmvOGN1JPlDxSLcaU0Aezw25rcW8omMmP-fNjJj_m5OeQezjmuiFMn_1E7D9Ntvs-YkA7tF0y_P-KX_28ajg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733939572</pqid></control><display><type>article</type><title>Molecular cluster perturbation theory. I. Formalism</title><source>Taylor and Francis Science and Technology Collection</source><creator>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</creator><creatorcontrib>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</creatorcontrib><description>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2015.1036145</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>coupled-cluster perturbation theory ; molecular crystals ; self-consistent embedding theory</subject><ispartof>Molecular physics, 2015-11, Vol.113 (22), p.3459-3470</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><rights>2015 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</citedby><cites>FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</cites><orcidid>0000-0001-5837-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Byrd, Jason N.</creatorcontrib><creatorcontrib>Jindal, Nakul</creatorcontrib><creatorcontrib>Molt, Robert W.</creatorcontrib><creatorcontrib>Bartlett, Rodney J.</creatorcontrib><creatorcontrib>Sanders, Beverly A.</creatorcontrib><creatorcontrib>Lotrich, Victor F.</creatorcontrib><title>Molecular cluster perturbation theory. I. Formalism</title><title>Molecular physics</title><description>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</description><subject>coupled-cluster perturbation theory</subject><subject>molecular crystals</subject><subject>self-consistent embedding theory</subject><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_ghDwnDj7ndyUYrVQ8aLnZTfuYkqarbMbpP_ehtarp4Hhed9hHkJuKVQUargHYKputKoYUHlYcUWFPCMzyhUrObD6nMwmppygS3KV0gYAFFCYEf4ae9-OvcWi7ceUPRY7j3lEZ3MXhyJ_-Yj7qlhVxTLi1vZd2l6Ti2D75G9Oc04-lk_vi5dy_fa8Wjyuy1ZAnUvnhdS2aaxzklHmKNMCGggMaq-Z5MCDFZq2gnkevGPaMkWZrb0DK6hifE7ujr07jN-jT9ls4ojD4aShmvOGN1JPlDxSLcaU0Aezw25rcW8omMmP-fNjJj_m5OeQezjmuiFMn_1E7D9Ntvs-YkA7tF0y_P-KX_28ajg</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Byrd, Jason N.</creator><creator>Jindal, Nakul</creator><creator>Molt, Robert W.</creator><creator>Bartlett, Rodney J.</creator><creator>Sanders, Beverly A.</creator><creator>Lotrich, Victor F.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5837-6316</orcidid></search><sort><creationdate>20151117</creationdate><title>Molecular cluster perturbation theory. I. Formalism</title><author>Byrd, Jason N. ; Jindal, Nakul ; Molt, Robert W. ; Bartlett, Rodney J. ; Sanders, Beverly A. ; Lotrich, Victor F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>coupled-cluster perturbation theory</topic><topic>molecular crystals</topic><topic>self-consistent embedding theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrd, Jason N.</creatorcontrib><creatorcontrib>Jindal, Nakul</creatorcontrib><creatorcontrib>Molt, Robert W.</creatorcontrib><creatorcontrib>Bartlett, Rodney J.</creatorcontrib><creatorcontrib>Sanders, Beverly A.</creatorcontrib><creatorcontrib>Lotrich, Victor F.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrd, Jason N.</au><au>Jindal, Nakul</au><au>Molt, Robert W.</au><au>Bartlett, Rodney J.</au><au>Sanders, Beverly A.</au><au>Lotrich, Victor F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cluster perturbation theory. I. Formalism</atitle><jtitle>Molecular physics</jtitle><date>2015-11-17</date><risdate>2015</risdate><volume>113</volume><issue>22</issue><spage>3459</spage><epage>3470</epage><pages>3459-3470</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00268976.2015.1036145</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5837-6316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-8976
ispartof Molecular physics, 2015-11, Vol.113 (22), p.3459-3470
issn 0026-8976
1362-3028
language eng
recordid cdi_proquest_journals_1733939572
source Taylor and Francis Science and Technology Collection
subjects coupled-cluster perturbation theory
molecular crystals
self-consistent embedding theory
title Molecular cluster perturbation theory. I. Formalism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cluster%20perturbation%20theory.%20I.%20Formalism&rft.jtitle=Molecular%20physics&rft.au=Byrd,%20Jason%20N.&rft.date=2015-11-17&rft.volume=113&rft.issue=22&rft.spage=3459&rft.epage=3470&rft.pages=3459-3470&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2015.1036145&rft_dat=%3Cproquest_infor%3E3869362951%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-be457a99abb5212b1274090f208e725303fa471c42e3feb27a2612a8eb0a41623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1733939572&rft_id=info:pmid/&rfr_iscdi=true