Loading…
Hybrid Cooling Method of Axial-Flux Permanent-Magnet Machines for Vehicle Applications
Thermal properties are a key issue in many applications associated with electrical machines. Because of its special configuration, an axial-flux electrical machine usually uses self-ventilation. However, this cooling method has a significant impact degrading the machine operating characteristics, an...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2015-12, Vol.62 (12), p.7382-7390 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal properties are a key issue in many applications associated with electrical machines. Because of its special configuration, an axial-flux electrical machine usually uses self-ventilation. However, this cooling method has a significant impact degrading the machine operating characteristics, and thus, an independent cooling system is desirable. The focus of this paper is on the steady-state thermal modeling and laboratory testing of an axial-flux permanent-magnet (AFPM) electrical machine intended for a traction application. The proposed hybrid cooling arrangement consists of a frame cooling circuit with a water flow inside, a set of copper bars inserted in the teeth, and a segment of potting material around the end windings. Computational fluid dynamics and finite-element analysis are applied for the preliminary design. This paper provides experimental verification of the simulation results on a 100-kW AFPM electrical machine. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2015.2465354 |