Loading…
Performance Bounds of Quaternion Estimators
The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventiona...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2015-12, Vol.26 (12), p.3287-3292 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63 |
container_end_page | 3292 |
container_issue | 12 |
container_start_page | 3287 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 26 |
creator | Yili Xia Jahanchahi, Cyrus Nitta, Tohru Mandic, Danilo P. |
description | The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed. |
doi_str_mv | 10.1109/TNNLS.2015.2388782 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1738833826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7021954</ieee_id><sourcerecordid>1736418484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMottS-gIIMuBFkau6TWWqpFyhVsYK7kOYCUzqTmswsfHsztnZhNieHfOfn5APgHMEJQrC8XS4W8_cJhohNMBGiEPgIDDHiOO_b48O9-ByAcYxrmA6HjNPyFAxwqoQiPgQ3rzY4H2rVaJvd-64xMfMue-tUa0NT-SabxbaqVetDPAMnTm2iHe_rCHw8zJbTp3z-8vg8vZvnmoqizTV3CqmSKWyYpYYqA50TJYSYKOYc1dQZJRwnKPWFg4JwzjVaKcMYNIaTEbje5W6D_-psbGVdRW03G9VY30WJCsIpElTQhF79Q9e-C03arqeEIETgPhDvKB18jME6uQ3pT-FbIih7m_LXpuxtyr3NNHS5j-5WtTWHkT93CbjYAZW19vBcQIxKRskPeW13dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738833826</pqid></control><display><type>article</type><title>Performance Bounds of Quaternion Estimators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yili Xia ; Jahanchahi, Cyrus ; Nitta, Tohru ; Mandic, Danilo P.</creator><creatorcontrib>Yili Xia ; Jahanchahi, Cyrus ; Nitta, Tohru ; Mandic, Danilo P.</creatorcontrib><description>The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2388782</identifier><identifier>PMID: 25643416</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Augmented quaternion statistics ; Covariance matrices ; Estimation ; Learning systems ; mean square error (MSE) ; Mean square errors ; quaternion widely linear (WL) model ; Quaternions ; semi-WL (SWL) model ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-12, Vol.26 (12), p.3287-3292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63</citedby><cites>FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7021954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25643416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Jahanchahi, Cyrus</creatorcontrib><creatorcontrib>Nitta, Tohru</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Performance Bounds of Quaternion Estimators</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.</description><subject>Analytical models</subject><subject>Augmented quaternion statistics</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Learning systems</subject><subject>mean square error (MSE)</subject><subject>Mean square errors</subject><subject>quaternion widely linear (WL) model</subject><subject>Quaternions</subject><subject>semi-WL (SWL) model</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMottS-gIIMuBFkau6TWWqpFyhVsYK7kOYCUzqTmswsfHsztnZhNieHfOfn5APgHMEJQrC8XS4W8_cJhohNMBGiEPgIDDHiOO_b48O9-ByAcYxrmA6HjNPyFAxwqoQiPgQ3rzY4H2rVaJvd-64xMfMue-tUa0NT-SabxbaqVetDPAMnTm2iHe_rCHw8zJbTp3z-8vg8vZvnmoqizTV3CqmSKWyYpYYqA50TJYSYKOYc1dQZJRwnKPWFg4JwzjVaKcMYNIaTEbje5W6D_-psbGVdRW03G9VY30WJCsIpElTQhF79Q9e-C03arqeEIETgPhDvKB18jME6uQ3pT-FbIih7m_LXpuxtyr3NNHS5j-5WtTWHkT93CbjYAZW19vBcQIxKRskPeW13dg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yili Xia</creator><creator>Jahanchahi, Cyrus</creator><creator>Nitta, Tohru</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Performance Bounds of Quaternion Estimators</title><author>Yili Xia ; Jahanchahi, Cyrus ; Nitta, Tohru ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical models</topic><topic>Augmented quaternion statistics</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Learning systems</topic><topic>mean square error (MSE)</topic><topic>Mean square errors</topic><topic>quaternion widely linear (WL) model</topic><topic>Quaternions</topic><topic>semi-WL (SWL) model</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Jahanchahi, Cyrus</creatorcontrib><creatorcontrib>Nitta, Tohru</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yili Xia</au><au>Jahanchahi, Cyrus</au><au>Nitta, Tohru</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds of Quaternion Estimators</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><issue>12</issue><spage>3287</spage><epage>3292</epage><pages>3287-3292</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25643416</pmid><doi>10.1109/TNNLS.2015.2388782</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2015-12, Vol.26 (12), p.3287-3292 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_1738833826 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Analytical models Augmented quaternion statistics Covariance matrices Estimation Learning systems mean square error (MSE) Mean square errors quaternion widely linear (WL) model Quaternions semi-WL (SWL) model Vectors |
title | Performance Bounds of Quaternion Estimators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20of%20Quaternion%20Estimators&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Yili%20Xia&rft.date=2015-12-01&rft.volume=26&rft.issue=12&rft.spage=3287&rft.epage=3292&rft.pages=3287-3292&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2388782&rft_dat=%3Cproquest_pubme%3E1736418484%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-c6fa1a95a2d5e4d4ad0ff890023a5ff4c4fda8f6313a57f083666c1bad550dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1738833826&rft_id=info:pmid/25643416&rft_ieee_id=7021954&rfr_iscdi=true |