Loading…

Iterative Channel Estimation and Impulsive Noise Mitigation Algorithm for OFDM-Based Receivers With Application to Power-Line Communications

This paper presents a novel iterative receiver used to mitigate the impact of impulsive noise (IN) on orthogonal frequency-division multiplexing (OFDM)-based baseband power-line communications. An adaptive threshold is mathematically derived for the detection of IN under a desired false alarm probab...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2015-12, Vol.30 (6), p.2435-2442
Main Author: Chien, Ying-Ren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel iterative receiver used to mitigate the impact of impulsive noise (IN) on orthogonal frequency-division multiplexing (OFDM)-based baseband power-line communications. An adaptive threshold is mathematically derived for the detection of IN under a desired false alarm probability. This detection mechanism is then used to mitigate IN in two stages. Prior to the OFDM demodulation, a pre-IN mitigation block is used to clip the stronger portions of the IN source. This preprocessing significantly reduces the power of the IN spreading into all subcarriers and, thus, facilitates the detection of residual IN in the second stage. After the OFDM demodulation, the proposed receiver iteratively estimates the channel impulse response and reduces IN sources that were not detected by the pre-IN mitigation block. Post-IN mitigation involves the iterative reconstruction of residual IN, which is then subtracted from the received signal. Denoising is also applied to the estimated channel impulse response. Thus, channel estimation and IN mitigation are mutually beneficial. Simulation results confirm that the proposed iterative receiver significantly improves the mean squared error of the channel estimation as well as bit-error rate.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2015.2445925