Loading…
Enhanced Dynamic Voltage Control of Type 4 Wind Turbines During Unbalanced Grid Faults
The fully rated converter of type 4 wind turbines is capable of providing dynamic voltage control during grid faults by injecting controlled reactive currents. This paper describes three different dynamic voltage control options during unbalanced grid faults: 1) the positive sequence voltage control...
Saved in:
Published in: | IEEE transactions on energy conversion 2015-12, Vol.30 (4), p.1650-1659 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fully rated converter of type 4 wind turbines is capable of providing dynamic voltage control during grid faults by injecting controlled reactive currents. This paper describes three different dynamic voltage control options during unbalanced grid faults: 1) the positive sequence voltage control with only a positive sequence reactive current injection and suppression of the negative sequence current; 2) the positive sequence voltage control with limitation of the positive sequence reactive current injection and suppression of the negative sequence current; and 3) the positive and negative sequence voltage control with both a positive and a negative sequence reactive current injection. These different control options are compared in simulations of a wind power plant connected to a meshed power system, including synchronous generators. It is shown that both the positive sequence voltage control with limitation and the positive and negative sequence voltage control can overcome the voltage rise and voltage distortion that can occur with pure positive sequence voltage control without limitation. Both of these options have a distinct fault response, where the positive and negative sequence voltage control results in a fault response that resembles the fault response of a synchronous generator with higher fault current contributions in the faulted phases. |
---|---|
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2015.2470126 |