Loading…

Automated extraction of ground surface along urban roads from mobile laser scanning point clouds

Extracting ground surface from high-density point clouds collected by Mobile Laser Scanning (MLS) systems is of vital importance in urban planning and digital city mapping. This article proposes a novel approach for automated extraction of ground surface along urban roads from MLS point clouds. The...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing letters 2016-02, Vol.7 (2), p.170-179
Main Authors: Wu, Bin, Yu, Bailang, Huang, Chang, Wu, Qiusheng, Wu, Jianping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracting ground surface from high-density point clouds collected by Mobile Laser Scanning (MLS) systems is of vital importance in urban planning and digital city mapping. This article proposes a novel approach for automated extraction of ground surface along urban roads from MLS point clouds. The approach, which was designed to handle both ordered and unordered MLS point clouds, consists of three key steps: constructing vertical profile from MLS point clouds along the vehicle trajectory; extracting candidate ground points using an adaptive alpha shapes algorithm; refining the candidate ground points with an elevation variance filter. To evaluate the performance of the proposed method, experiments were conducted using two types of urban street-scene point clouds. The results reveal that the ground points can be detected with an error rate of as low as 1.9%, proving that our proposed method offers a promising solution for automated extraction of ground surface from MLS point clouds.
ISSN:2150-7058
2150-704X
2150-7058
DOI:10.1080/2150704X.2015.1117156