Loading…
Experimental Demonstration of a 1024-QAM Optical Camera Communication System
In this letter, we experimentally demonstrate a 1024-quadrature-amplitude-modulation (QAM) optical camera communications (OCC) system using a dual light-emitting diode (LED) and a commercial digital single-lens reflex camera. An undersampled QAM subcarrier modulation (UQAMSM) is proposed to support...
Saved in:
Published in: | IEEE photonics technology letters 2016-01, Vol.28 (2), p.139-142 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, we experimentally demonstrate a 1024-quadrature-amplitude-modulation (QAM) optical camera communications (OCC) system using a dual light-emitting diode (LED) and a commercial digital single-lens reflex camera. An undersampled QAM subcarrier modulation (UQAMSM) is proposed to support a high-efficiency and non-flickering OCC system. Owing to the built-in gamma correction function of the camera, pre- and post-compensation techniques are successfully applied to compensate for the non-linear impairment. A dedicated framing structure is also designed to support the proposed UQAMSM and compensation techniques. The experimental results show that this system is able to achieve a data rate of 500 b/s using a dual LED and a 50 ft/s commercial camera over a transmission span of 1.5 m, which is suitable for the transmission and reception of location-based information. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2015.2487544 |