Loading…

Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds

Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics...

Full description

Saved in:
Bibliographic Details
Published in:MRS communications 2015-12, Vol.5 (4), p.631-639
Main Authors: Xie, Jiajun, Shao, Huifeng, He, Dongshuang, Yang, Xianyan, Yao, Chunlei, Ye, Juan, He, Yong, Fu, Jianzhong, Gou, Zhongru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723
cites cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723
container_end_page 639
container_issue 4
container_start_page 631
container_title MRS communications
container_volume 5
creator Xie, Jiajun
Shao, Huifeng
He, Dongshuang
Yang, Xianyan
Yao, Chunlei
Ye, Juan
He, Yong
Fu, Jianzhong
Gou, Zhongru
description Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.
doi_str_mv 10.1557/mrc.2015.74
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1751297860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2015_74</cupid><sourcerecordid>3903388511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78g8EPGrXJG2S9iiLX7DgxT2HtEnaLG1TkxTx39vSRTyIc5lheHiZeQC4xmiLKeX3na-2BGG65dkZWBFMi4TljJ__zLS4BJsQjmgqygjndAXMoY1eNrZuYIhe93VsoDMwNl7rRNlO98G6XrZw8LaPWkFl23Hunax7HezYQeUG29fw07WtDNH1Nmo4OO_GAEMljXGtClfgwsg26M2pr8Hh6fF995Ls355fdw_7pMoQiUlGU4mp4VmlCOUEMaYoUZUscsLSsqR5OW2MQapEtCxRrpkmJiWISibTnJN0DW6W3MG7j1GHKI5u9NP9QWBOMSl4ztBE3S5U5V0IXhsxfddJ_yUwErNLMbkUs0vBs4m-W-gwO6i1_5X5J56cwmVXeqtq_T__DcXbht4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751297860</pqid></control><display><type>article</type><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><source>Springer Link</source><creator>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</creator><creatorcontrib>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</creatorcontrib><description>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (&gt;120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2015.74</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Biomaterials ; Characterization and Evaluation of Materials ; Materials Engineering ; Materials Science ; Nanotechnology ; Polymer Sciences ; Research Letters</subject><ispartof>MRS communications, 2015-12, Vol.5 (4), p.631-639</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</citedby><cites>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Jiajun</creatorcontrib><creatorcontrib>Shao, Huifeng</creatorcontrib><creatorcontrib>He, Dongshuang</creatorcontrib><creatorcontrib>Yang, Xianyan</creatorcontrib><creatorcontrib>Yao, Chunlei</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Fu, Jianzhong</creatorcontrib><creatorcontrib>Gou, Zhongru</creatorcontrib><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (&gt;120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</description><subject>Biomaterials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Research Letters</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKx78g8EPGrXJG2S9iiLX7DgxT2HtEnaLG1TkxTx39vSRTyIc5lheHiZeQC4xmiLKeX3na-2BGG65dkZWBFMi4TljJ__zLS4BJsQjmgqygjndAXMoY1eNrZuYIhe93VsoDMwNl7rRNlO98G6XrZw8LaPWkFl23Hunax7HezYQeUG29fw07WtDNH1Nmo4OO_GAEMljXGtClfgwsg26M2pr8Hh6fF995Ls355fdw_7pMoQiUlGU4mp4VmlCOUEMaYoUZUscsLSsqR5OW2MQapEtCxRrpkmJiWISibTnJN0DW6W3MG7j1GHKI5u9NP9QWBOMSl4ztBE3S5U5V0IXhsxfddJ_yUwErNLMbkUs0vBs4m-W-gwO6i1_5X5J56cwmVXeqtq_T__DcXbht4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xie, Jiajun</creator><creator>Shao, Huifeng</creator><creator>He, Dongshuang</creator><creator>Yang, Xianyan</creator><creator>Yao, Chunlei</creator><creator>Ye, Juan</creator><creator>He, Yong</creator><creator>Fu, Jianzhong</creator><creator>Gou, Zhongru</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><author>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomaterials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Research Letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jiajun</creatorcontrib><creatorcontrib>Shao, Huifeng</creatorcontrib><creatorcontrib>He, Dongshuang</creatorcontrib><creatorcontrib>Yang, Xianyan</creatorcontrib><creatorcontrib>Yao, Chunlei</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Fu, Jianzhong</creatorcontrib><creatorcontrib>Gou, Zhongru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jiajun</au><au>Shao, Huifeng</au><au>He, Dongshuang</au><au>Yang, Xianyan</au><au>Yao, Chunlei</au><au>Ye, Juan</au><au>He, Yong</au><au>Fu, Jianzhong</au><au>Gou, Zhongru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>5</volume><issue>4</issue><spage>631</spage><epage>639</epage><pages>631-639</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (&gt;120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2015.74</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2159-6859
ispartof MRS communications, 2015-12, Vol.5 (4), p.631-639
issn 2159-6859
2159-6867
language eng
recordid cdi_proquest_journals_1751297860
source Springer Link
subjects Biomaterials
Characterization and Evaluation of Materials
Materials Engineering
Materials Science
Nanotechnology
Polymer Sciences
Research Letters
title Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20strength%20of%20three-dimensional%20printed%20diluted%20magnesium%20doping%20wollastonite%20porous%20scaffolds&rft.jtitle=MRS%20communications&rft.au=Xie,%20Jiajun&rft.date=2015-12-01&rft.volume=5&rft.issue=4&rft.spage=631&rft.epage=639&rft.pages=631-639&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2015.74&rft_dat=%3Cproquest_cross%3E3903388511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751297860&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2015_74&rfr_iscdi=true