Loading…
Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds
Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics...
Saved in:
Published in: | MRS communications 2015-12, Vol.5 (4), p.631-639 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723 |
container_end_page | 639 |
container_issue | 4 |
container_start_page | 631 |
container_title | MRS communications |
container_volume | 5 |
creator | Xie, Jiajun Shao, Huifeng He, Dongshuang Yang, Xianyan Yao, Chunlei Ye, Juan He, Yong Fu, Jianzhong Gou, Zhongru |
description | Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications. |
doi_str_mv | 10.1557/mrc.2015.74 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1751297860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2015_74</cupid><sourcerecordid>3903388511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78g8EPGrXJG2S9iiLX7DgxT2HtEnaLG1TkxTx39vSRTyIc5lheHiZeQC4xmiLKeX3na-2BGG65dkZWBFMi4TljJ__zLS4BJsQjmgqygjndAXMoY1eNrZuYIhe93VsoDMwNl7rRNlO98G6XrZw8LaPWkFl23Hunax7HezYQeUG29fw07WtDNH1Nmo4OO_GAEMljXGtClfgwsg26M2pr8Hh6fF995Ls355fdw_7pMoQiUlGU4mp4VmlCOUEMaYoUZUscsLSsqR5OW2MQapEtCxRrpkmJiWISibTnJN0DW6W3MG7j1GHKI5u9NP9QWBOMSl4ztBE3S5U5V0IXhsxfddJ_yUwErNLMbkUs0vBs4m-W-gwO6i1_5X5J56cwmVXeqtq_T__DcXbht4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751297860</pqid></control><display><type>article</type><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><source>Springer Link</source><creator>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</creator><creatorcontrib>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</creatorcontrib><description>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2015.74</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Biomaterials ; Characterization and Evaluation of Materials ; Materials Engineering ; Materials Science ; Nanotechnology ; Polymer Sciences ; Research Letters</subject><ispartof>MRS communications, 2015-12, Vol.5 (4), p.631-639</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</citedby><cites>FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Jiajun</creatorcontrib><creatorcontrib>Shao, Huifeng</creatorcontrib><creatorcontrib>He, Dongshuang</creatorcontrib><creatorcontrib>Yang, Xianyan</creatorcontrib><creatorcontrib>Yao, Chunlei</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Fu, Jianzhong</creatorcontrib><creatorcontrib>Gou, Zhongru</creatorcontrib><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</description><subject>Biomaterials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Research Letters</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKx78g8EPGrXJG2S9iiLX7DgxT2HtEnaLG1TkxTx39vSRTyIc5lheHiZeQC4xmiLKeX3na-2BGG65dkZWBFMi4TljJ__zLS4BJsQjmgqygjndAXMoY1eNrZuYIhe93VsoDMwNl7rRNlO98G6XrZw8LaPWkFl23Hunax7HezYQeUG29fw07WtDNH1Nmo4OO_GAEMljXGtClfgwsg26M2pr8Hh6fF995Ls355fdw_7pMoQiUlGU4mp4VmlCOUEMaYoUZUscsLSsqR5OW2MQapEtCxRrpkmJiWISibTnJN0DW6W3MG7j1GHKI5u9NP9QWBOMSl4ztBE3S5U5V0IXhsxfddJ_yUwErNLMbkUs0vBs4m-W-gwO6i1_5X5J56cwmVXeqtq_T__DcXbht4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xie, Jiajun</creator><creator>Shao, Huifeng</creator><creator>He, Dongshuang</creator><creator>Yang, Xianyan</creator><creator>Yao, Chunlei</creator><creator>Ye, Juan</creator><creator>He, Yong</creator><creator>Fu, Jianzhong</creator><creator>Gou, Zhongru</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</title><author>Xie, Jiajun ; Shao, Huifeng ; He, Dongshuang ; Yang, Xianyan ; Yao, Chunlei ; Ye, Juan ; He, Yong ; Fu, Jianzhong ; Gou, Zhongru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomaterials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Research Letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jiajun</creatorcontrib><creatorcontrib>Shao, Huifeng</creatorcontrib><creatorcontrib>He, Dongshuang</creatorcontrib><creatorcontrib>Yang, Xianyan</creatorcontrib><creatorcontrib>Yao, Chunlei</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Fu, Jianzhong</creatorcontrib><creatorcontrib>Gou, Zhongru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jiajun</au><au>Shao, Huifeng</au><au>He, Dongshuang</au><au>Yang, Xianyan</au><au>Yao, Chunlei</au><au>Ye, Juan</au><au>He, Yong</au><au>Fu, Jianzhong</au><au>Gou, Zhongru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>5</volume><issue>4</issue><spage>631</spage><epage>639</epage><pages>631-639</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2015.74</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-6859 |
ispartof | MRS communications, 2015-12, Vol.5 (4), p.631-639 |
issn | 2159-6859 2159-6867 |
language | eng |
recordid | cdi_proquest_journals_1751297860 |
source | Springer Link |
subjects | Biomaterials Characterization and Evaluation of Materials Materials Engineering Materials Science Nanotechnology Polymer Sciences Research Letters |
title | Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20strength%20of%20three-dimensional%20printed%20diluted%20magnesium%20doping%20wollastonite%20porous%20scaffolds&rft.jtitle=MRS%20communications&rft.au=Xie,%20Jiajun&rft.date=2015-12-01&rft.volume=5&rft.issue=4&rft.spage=631&rft.epage=639&rft.pages=631-639&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2015.74&rft_dat=%3Cproquest_cross%3E3903388511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-453a15f74cd2572066d52dca98263bb58b66dff0db05bb08e6e2f3205a6a38723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751297860&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2015_74&rfr_iscdi=true |