Loading…
Reduced-temperature solution-processed transparent oxide low-voltage-operable field-effect transistors
Metal oxide-based transistors can be fabricated by low-cost, large-area solution processing methods, but involve a trade-off between low processing temperature, facile charge transport and high-capacitance/low-voltage transistor gates. We achieve these simultaneously by fabricating zinc oxide and so...
Saved in:
Published in: | MRS communications 2015-12, Vol.5 (4), p.605-611 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal oxide-based transistors can be fabricated by low-cost, large-area solution processing methods, but involve a trade-off between low processing temperature, facile charge transport and high-capacitance/low-voltage transistor gates. We achieve these simultaneously by fabricating zinc oxide and sodium-incorporated alumina (SA) thin films with temperature not exceeding 200 to 250 °C using aqueous and combustion precursors, respectively. X-ray reflectivity shows a compositionally distinct SA boundary layer forming near the substrate and that a portion of the SA is chemically removed during the subsequent semiconductor deposition. Improved etch resistance and reduced dielectric leakage was obtained when (3-glycidoxypropyl) trimethoxysilane was included in the SA precursor. |
---|---|
ISSN: | 2159-6859 2159-6867 |
DOI: | 10.1557/mrc.2015.79 |