Loading…
Optimal Power Flow as a Polynomial Optimization Problem
Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving...
Saved in:
Published in: | IEEE transactions on power systems 2016-01, Vol.31 (1), p.539-546 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013 |
container_end_page | 546 |
container_issue | 1 |
container_start_page | 539 |
container_title | IEEE transactions on power systems |
container_volume | 31 |
creator | Ghaddar, Bissan Marecek, Jakub Mevissen, Martin |
description | Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour. |
doi_str_mv | 10.1109/TPWRS.2015.2390037 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1752007459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7024950</ieee_id><sourcerecordid>1793238499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKsvoJcFL162TpJNsjlKsSoUWrTiMSRpClt2NzXZUurTm22LB0_D8H__MHwI3WIYYQzycTH_ev8YEcBsRKgEoOIMDTBjZQ5cyHM0gLJkeSkZXKKrGNcAwFMwQGK26apG19nc71zIJrXfZTpmOu31vvVNlaIDUv3orvJtNg_e1K65RhcrXUd3c5pD9Dl5Xoxf8-ns5W38NM0tlUWXc24MsQRoQYRwVjPuuAROS2MxxtTg_g3iVtQWS8cJWGIp08KaZcGWBjAdoofj3U3w31sXO9VU0bq61q3z26iwkJTQspAyoff_0LXfhjZ9lyhGAETBeoocKRt8jMGt1CYkAWGvMKjepTq4VL1LdXKZSnfHUuWc-ysIIEUySn8B6OpuZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752007459</pqid></control><display><type>article</type><title>Optimal Power Flow as a Polynomial Optimization Problem</title><source>IEEE Xplore (Online service)</source><creator>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</creator><creatorcontrib>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</creatorcontrib><description>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2390037</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Asymptotic properties ; Convergence ; Data buses ; Hierarchies ; Inequalities ; Linear matrix inequalities ; Load flow ; Mathematical programming ; method of moments ; numerical analysis ; Optimization ; Polynomials ; Power flow ; power system management ; sparse matrices</subject><ispartof>IEEE transactions on power systems, 2016-01, Vol.31 (1), p.539-546</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</citedby><cites>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7024950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ghaddar, Bissan</creatorcontrib><creatorcontrib>Marecek, Jakub</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><title>Optimal Power Flow as a Polynomial Optimization Problem</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</description><subject>Approximation methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Data buses</subject><subject>Hierarchies</subject><subject>Inequalities</subject><subject>Linear matrix inequalities</subject><subject>Load flow</subject><subject>Mathematical programming</subject><subject>method of moments</subject><subject>numerical analysis</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Power flow</subject><subject>power system management</subject><subject>sparse matrices</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQhoMoWKsvoJcFL162TpJNsjlKsSoUWrTiMSRpClt2NzXZUurTm22LB0_D8H__MHwI3WIYYQzycTH_ev8YEcBsRKgEoOIMDTBjZQ5cyHM0gLJkeSkZXKKrGNcAwFMwQGK26apG19nc71zIJrXfZTpmOu31vvVNlaIDUv3orvJtNg_e1K65RhcrXUd3c5pD9Dl5Xoxf8-ns5W38NM0tlUWXc24MsQRoQYRwVjPuuAROS2MxxtTg_g3iVtQWS8cJWGIp08KaZcGWBjAdoofj3U3w31sXO9VU0bq61q3z26iwkJTQspAyoff_0LXfhjZ9lyhGAETBeoocKRt8jMGt1CYkAWGvMKjepTq4VL1LdXKZSnfHUuWc-ysIIEUySn8B6OpuZQ</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Ghaddar, Bissan</creator><creator>Marecek, Jakub</creator><creator>Mevissen, Martin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201601</creationdate><title>Optimal Power Flow as a Polynomial Optimization Problem</title><author>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Data buses</topic><topic>Hierarchies</topic><topic>Inequalities</topic><topic>Linear matrix inequalities</topic><topic>Load flow</topic><topic>Mathematical programming</topic><topic>method of moments</topic><topic>numerical analysis</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Power flow</topic><topic>power system management</topic><topic>sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaddar, Bissan</creatorcontrib><creatorcontrib>Marecek, Jakub</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaddar, Bissan</au><au>Marecek, Jakub</au><au>Mevissen, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Power Flow as a Polynomial Optimization Problem</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2390037</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2016-01, Vol.31 (1), p.539-546 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_1752007459 |
source | IEEE Xplore (Online service) |
subjects | Approximation methods Asymptotic properties Convergence Data buses Hierarchies Inequalities Linear matrix inequalities Load flow Mathematical programming method of moments numerical analysis Optimization Polynomials Power flow power system management sparse matrices |
title | Optimal Power Flow as a Polynomial Optimization Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Power%20Flow%20as%20a%20Polynomial%20Optimization%20Problem&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ghaddar,%20Bissan&rft.date=2016-01&rft.volume=31&rft.issue=1&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2390037&rft_dat=%3Cproquest_ieee_%3E1793238499%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752007459&rft_id=info:pmid/&rft_ieee_id=7024950&rfr_iscdi=true |