Loading…

Optimal Power Flow as a Polynomial Optimization Problem

Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2016-01, Vol.31 (1), p.539-546
Main Authors: Ghaddar, Bissan, Marecek, Jakub, Mevissen, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013
cites cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013
container_end_page 546
container_issue 1
container_start_page 539
container_title IEEE transactions on power systems
container_volume 31
creator Ghaddar, Bissan
Marecek, Jakub
Mevissen, Martin
description Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.
doi_str_mv 10.1109/TPWRS.2015.2390037
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1752007459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7024950</ieee_id><sourcerecordid>1793238499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKsvoJcFL162TpJNsjlKsSoUWrTiMSRpClt2NzXZUurTm22LB0_D8H__MHwI3WIYYQzycTH_ev8YEcBsRKgEoOIMDTBjZQ5cyHM0gLJkeSkZXKKrGNcAwFMwQGK26apG19nc71zIJrXfZTpmOu31vvVNlaIDUv3orvJtNg_e1K65RhcrXUd3c5pD9Dl5Xoxf8-ns5W38NM0tlUWXc24MsQRoQYRwVjPuuAROS2MxxtTg_g3iVtQWS8cJWGIp08KaZcGWBjAdoofj3U3w31sXO9VU0bq61q3z26iwkJTQspAyoff_0LXfhjZ9lyhGAETBeoocKRt8jMGt1CYkAWGvMKjepTq4VL1LdXKZSnfHUuWc-ysIIEUySn8B6OpuZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752007459</pqid></control><display><type>article</type><title>Optimal Power Flow as a Polynomial Optimization Problem</title><source>IEEE Xplore (Online service)</source><creator>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</creator><creatorcontrib>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</creatorcontrib><description>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2390037</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Asymptotic properties ; Convergence ; Data buses ; Hierarchies ; Inequalities ; Linear matrix inequalities ; Load flow ; Mathematical programming ; method of moments ; numerical analysis ; Optimization ; Polynomials ; Power flow ; power system management ; sparse matrices</subject><ispartof>IEEE transactions on power systems, 2016-01, Vol.31 (1), p.539-546</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</citedby><cites>FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7024950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ghaddar, Bissan</creatorcontrib><creatorcontrib>Marecek, Jakub</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><title>Optimal Power Flow as a Polynomial Optimization Problem</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</description><subject>Approximation methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Data buses</subject><subject>Hierarchies</subject><subject>Inequalities</subject><subject>Linear matrix inequalities</subject><subject>Load flow</subject><subject>Mathematical programming</subject><subject>method of moments</subject><subject>numerical analysis</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Power flow</subject><subject>power system management</subject><subject>sparse matrices</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQhoMoWKsvoJcFL162TpJNsjlKsSoUWrTiMSRpClt2NzXZUurTm22LB0_D8H__MHwI3WIYYQzycTH_ev8YEcBsRKgEoOIMDTBjZQ5cyHM0gLJkeSkZXKKrGNcAwFMwQGK26apG19nc71zIJrXfZTpmOu31vvVNlaIDUv3orvJtNg_e1K65RhcrXUd3c5pD9Dl5Xoxf8-ns5W38NM0tlUWXc24MsQRoQYRwVjPuuAROS2MxxtTg_g3iVtQWS8cJWGIp08KaZcGWBjAdoofj3U3w31sXO9VU0bq61q3z26iwkJTQspAyoff_0LXfhjZ9lyhGAETBeoocKRt8jMGt1CYkAWGvMKjepTq4VL1LdXKZSnfHUuWc-ysIIEUySn8B6OpuZQ</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Ghaddar, Bissan</creator><creator>Marecek, Jakub</creator><creator>Mevissen, Martin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201601</creationdate><title>Optimal Power Flow as a Polynomial Optimization Problem</title><author>Ghaddar, Bissan ; Marecek, Jakub ; Mevissen, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Data buses</topic><topic>Hierarchies</topic><topic>Inequalities</topic><topic>Linear matrix inequalities</topic><topic>Load flow</topic><topic>Mathematical programming</topic><topic>method of moments</topic><topic>numerical analysis</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Power flow</topic><topic>power system management</topic><topic>sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaddar, Bissan</creatorcontrib><creatorcontrib>Marecek, Jakub</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaddar, Bissan</au><au>Marecek, Jakub</au><au>Mevissen, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Power Flow as a Polynomial Optimization Problem</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Formulating the alternating current optimal power flow (ACOPF) as a polynomial optimization problem makes it possible to solve large instances in practice and to guarantee asymptotic convergence in theory. We formulate the ACOPF as a degree-two polynomial program and study two approaches to solving it via convexifications. In the first approach, we tighten the first-order relaxation of the nonconvex quadratic program by adding valid inequalities. In the second approach, we exploit the structure of the polynomial program by using a sparse variant of Lasserre's hierarchy. This allows us to solve instances of up to 39 buses to global optimality and to provide strong bounds for the Polish network within an hour.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2390037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2016-01, Vol.31 (1), p.539-546
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_1752007459
source IEEE Xplore (Online service)
subjects Approximation methods
Asymptotic properties
Convergence
Data buses
Hierarchies
Inequalities
Linear matrix inequalities
Load flow
Mathematical programming
method of moments
numerical analysis
Optimization
Polynomials
Power flow
power system management
sparse matrices
title Optimal Power Flow as a Polynomial Optimization Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Power%20Flow%20as%20a%20Polynomial%20Optimization%20Problem&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ghaddar,%20Bissan&rft.date=2016-01&rft.volume=31&rft.issue=1&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2390037&rft_dat=%3Cproquest_ieee_%3E1793238499%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-66bb2c2034277eca56e690638bc1113b106672ef3c4de620c2c35a7cbd45db013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752007459&rft_id=info:pmid/&rft_ieee_id=7024950&rfr_iscdi=true