Loading…
A Low Frequency Broadband Flextensional Ultrasonic Transducer Array
In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The trans...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2016-01, Vol.63 (1), p.128-138 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The transducer structure, consisting of a plurality of circular elementary cells orderly arranged according to a periodic hexagonal tiling, features a high flexibility in the definition of the active area shape and size. We investigate, by finite element modeling (FEM), the influence of different piezoelectric and elastic materials for the flexural plate, for the plate support and for the backing, on the transducer electroacoustic behavior. We carry out the dimensioning of the transducer components and cell layout, in terms of materials and geometry, respectively, by aiming at a circular active area of 80-mm diameter and broadband operation in the 30-100-kHz frequency range in immersion. PZT-5H ceramic disks and a calibrated thickness stainless steel plate are chosen for the vibrating structure, and FR-4 laminates and a brass plate, respectively, for the plate support and the backing. The diameter of the individual cells is set to 6 mm resulting in 121 cells describing a quasi-circular area, and the total thickness of the transducer is less than 10 mm. We report on the fabrication process flow for the accurate assembly of the transducer, based, respectively, on epoxy resin and wire bonding for the mechanical and electrical interconnection of the individual parts. The results of the electrical impedance and transmit pressure field characterization are finally reported and discussed. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2015.2496300 |