Loading…
Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation
The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles....
Saved in:
Published in: | Microfluidics and nanofluidics 2016, Vol.20 (1), p.1, Article 6 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3 |
container_end_page | |
container_issue | 1 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 20 |
creator | Bokharaei, Mehrdad Schneider, Thomas Dutz, Silvio Stone, Roland C. Mefford, O. Thompson Häfeli, Urs O. |
description | The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy. |
doi_str_mv | 10.1007/s10404-015-1693-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1753380982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3912266651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wkk_TjKOsnLOhBzyHNx26WtqnJ9tB_b0pFvHiaYeZ932EehK4puaWElHeREkZYRijPaFFDNp2gFS0oZKyuyelvX-Xn6CLGAyGszClZIf0evB7V0fkee4s733vt4mBCNBp3ctebo1N48O3UmZC6zqng47A3wUTseiyXiW1Hp9Na7d2AZa8xPODourGVc_IlOrOyjebqp67R59Pjx-Yl2749v27ut5kCDseMMmqVtiUAa7TkYGrgVcW4alSpeVOVVWNtobikDPKGEFvWAFIXFlRuc6VhjW6W3CH4r9HEozj4MfTppKAlB6hIApBUdFHNn8RgrBiC62SYBCVihikWmCLBFDNMMSVPvnhi0vY7E_4k_2v6BkIfeak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753380982</pqid></control><display><type>article</type><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><source>Springer Nature</source><creator>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</creator><creatorcontrib>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</creatorcontrib><description>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-015-1693-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Magnetic fields ; Nanotechnology and Microengineering ; Polymers ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2016, Vol.20 (1), p.1, Article 6</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</citedby><cites>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bokharaei, Mehrdad</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Dutz, Silvio</creatorcontrib><creatorcontrib>Stone, Roland C.</creatorcontrib><creatorcontrib>Mefford, O. Thompson</creatorcontrib><creatorcontrib>Häfeli, Urs O.</creatorcontrib><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Magnetic fields</subject><subject>Nanotechnology and Microengineering</subject><subject>Polymers</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wkk_TjKOsnLOhBzyHNx26WtqnJ9tB_b0pFvHiaYeZ932EehK4puaWElHeREkZYRijPaFFDNp2gFS0oZKyuyelvX-Xn6CLGAyGszClZIf0evB7V0fkee4s733vt4mBCNBp3ctebo1N48O3UmZC6zqng47A3wUTseiyXiW1Hp9Na7d2AZa8xPODourGVc_IlOrOyjebqp67R59Pjx-Yl2749v27ut5kCDseMMmqVtiUAa7TkYGrgVcW4alSpeVOVVWNtobikDPKGEFvWAFIXFlRuc6VhjW6W3CH4r9HEozj4MfTppKAlB6hIApBUdFHNn8RgrBiC62SYBCVihikWmCLBFDNMMSVPvnhi0vY7E_4k_2v6BkIfeak</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Bokharaei, Mehrdad</creator><creator>Schneider, Thomas</creator><creator>Dutz, Silvio</creator><creator>Stone, Roland C.</creator><creator>Mefford, O. Thompson</creator><creator>Häfeli, Urs O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>2016</creationdate><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><author>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Magnetic fields</topic><topic>Nanotechnology and Microengineering</topic><topic>Polymers</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokharaei, Mehrdad</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Dutz, Silvio</creatorcontrib><creatorcontrib>Stone, Roland C.</creatorcontrib><creatorcontrib>Mefford, O. Thompson</creatorcontrib><creatorcontrib>Häfeli, Urs O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokharaei, Mehrdad</au><au>Schneider, Thomas</au><au>Dutz, Silvio</au><au>Stone, Roland C.</au><au>Mefford, O. Thompson</au><au>Häfeli, Urs O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2016</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>6</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-015-1693-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2016, Vol.20 (1), p.1, Article 6 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1753380982 |
source | Springer Nature |
subjects | Analytical Chemistry Biomedical Engineering and Bioengineering Engineering Engineering Fluid Dynamics Magnetic fields Nanotechnology and Microengineering Polymers Research Paper |
title | Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20monodispersed%20magnetic%20polymeric%20microspheres%20in%20a%20microfluidic%20chip%20and%203D%20simulation&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Bokharaei,%20Mehrdad&rft.date=2016&rft.volume=20&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=6&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-015-1693-y&rft_dat=%3Cproquest_cross%3E3912266651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753380982&rft_id=info:pmid/&rfr_iscdi=true |