Loading…

Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation

The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles....

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2016, Vol.20 (1), p.1, Article 6
Main Authors: Bokharaei, Mehrdad, Schneider, Thomas, Dutz, Silvio, Stone, Roland C., Mefford, O. Thompson, Häfeli, Urs O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3
cites cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3
container_end_page
container_issue 1
container_start_page 1
container_title Microfluidics and nanofluidics
container_volume 20
creator Bokharaei, Mehrdad
Schneider, Thomas
Dutz, Silvio
Stone, Roland C.
Mefford, O. Thompson
Häfeli, Urs O.
description The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.
doi_str_mv 10.1007/s10404-015-1693-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1753380982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3912266651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wkk_TjKOsnLOhBzyHNx26WtqnJ9tB_b0pFvHiaYeZ932EehK4puaWElHeREkZYRijPaFFDNp2gFS0oZKyuyelvX-Xn6CLGAyGszClZIf0evB7V0fkee4s733vt4mBCNBp3ctebo1N48O3UmZC6zqng47A3wUTseiyXiW1Hp9Na7d2AZa8xPODourGVc_IlOrOyjebqp67R59Pjx-Yl2749v27ut5kCDseMMmqVtiUAa7TkYGrgVcW4alSpeVOVVWNtobikDPKGEFvWAFIXFlRuc6VhjW6W3CH4r9HEozj4MfTppKAlB6hIApBUdFHNn8RgrBiC62SYBCVihikWmCLBFDNMMSVPvnhi0vY7E_4k_2v6BkIfeak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753380982</pqid></control><display><type>article</type><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><source>Springer Nature</source><creator>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</creator><creatorcontrib>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</creatorcontrib><description>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-015-1693-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Magnetic fields ; Nanotechnology and Microengineering ; Polymers ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2016, Vol.20 (1), p.1, Article 6</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</citedby><cites>FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bokharaei, Mehrdad</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Dutz, Silvio</creatorcontrib><creatorcontrib>Stone, Roland C.</creatorcontrib><creatorcontrib>Mefford, O. Thompson</creatorcontrib><creatorcontrib>Häfeli, Urs O.</creatorcontrib><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Magnetic fields</subject><subject>Nanotechnology and Microengineering</subject><subject>Polymers</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wkk_TjKOsnLOhBzyHNx26WtqnJ9tB_b0pFvHiaYeZ932EehK4puaWElHeREkZYRijPaFFDNp2gFS0oZKyuyelvX-Xn6CLGAyGszClZIf0evB7V0fkee4s733vt4mBCNBp3ctebo1N48O3UmZC6zqng47A3wUTseiyXiW1Hp9Na7d2AZa8xPODourGVc_IlOrOyjebqp67R59Pjx-Yl2749v27ut5kCDseMMmqVtiUAa7TkYGrgVcW4alSpeVOVVWNtobikDPKGEFvWAFIXFlRuc6VhjW6W3CH4r9HEozj4MfTppKAlB6hIApBUdFHNn8RgrBiC62SYBCVihikWmCLBFDNMMSVPvnhi0vY7E_4k_2v6BkIfeak</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Bokharaei, Mehrdad</creator><creator>Schneider, Thomas</creator><creator>Dutz, Silvio</creator><creator>Stone, Roland C.</creator><creator>Mefford, O. Thompson</creator><creator>Häfeli, Urs O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>2016</creationdate><title>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</title><author>Bokharaei, Mehrdad ; Schneider, Thomas ; Dutz, Silvio ; Stone, Roland C. ; Mefford, O. Thompson ; Häfeli, Urs O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Magnetic fields</topic><topic>Nanotechnology and Microengineering</topic><topic>Polymers</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokharaei, Mehrdad</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Dutz, Silvio</creatorcontrib><creatorcontrib>Stone, Roland C.</creatorcontrib><creatorcontrib>Mefford, O. Thompson</creatorcontrib><creatorcontrib>Häfeli, Urs O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokharaei, Mehrdad</au><au>Schneider, Thomas</au><au>Dutz, Silvio</au><au>Stone, Roland C.</au><au>Mefford, O. Thompson</au><au>Häfeli, Urs O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2016</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>6</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The principles of droplet generation due to hydrodynamic instability in a microfluidic flow-focusing system were used to design and optimize a microfluidic chip that can be used for the direct production of polymeric microspheres with narrow size distribution and loaded with magnetic nanoparticles. To better understand the influence of different parameters on droplet generation and on the size and size distribution of the droplets in our microfluidic system, the behavior of the disperse phase and the continuous phase was simulated in a 3D computational multiphase droplet generation model. The experimentally determined droplet sizes showed good correlation with the computational model, agreeing within 1–17 % of each other, depending on the production parameters. In addition to pure polymer microspheres, for the first time our design allowed for the production of quasi-monosized magnetic microspheres containing magnetic nanoparticles with more than 15 wt%. The magnetic microspheres maintained superparamagnetic behavior and produced heat upon exposure to an alternating magnetic field which will allow for their future application in magnetically targeted hyperthermia treatment in cancer therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-015-1693-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2016, Vol.20 (1), p.1, Article 6
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1753380982
source Springer Nature
subjects Analytical Chemistry
Biomedical Engineering and Bioengineering
Engineering
Engineering Fluid Dynamics
Magnetic fields
Nanotechnology and Microengineering
Polymers
Research Paper
title Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20monodispersed%20magnetic%20polymeric%20microspheres%20in%20a%20microfluidic%20chip%20and%203D%20simulation&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Bokharaei,%20Mehrdad&rft.date=2016&rft.volume=20&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=6&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-015-1693-y&rft_dat=%3Cproquest_cross%3E3912266651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-141fcdf7334bda53e9358845cbc7d5b878bff6c5a1432b00f7933ad6f3c2f2cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753380982&rft_id=info:pmid/&rfr_iscdi=true