Loading…
Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data
The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data....
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-9a2fda7734e816f81be494fe1130db1458aeb0af850a6d2cbbaebf100d7fb9f63 |
---|---|
cites | |
container_end_page | 760 |
container_issue | 8 |
container_start_page | 755 |
container_title | |
container_volume | XL-8 |
creator | Iyyappan, M. Ramakrishnan, S. S. Srinivasa Raju, K. |
description | The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data. The backscattering coefficient were extracted for various land features from Cband SAR data. The training sample collecting from satellite optical imagery of study and field visit for verification. The training samples are used for the supervised classification technique of maximum Likelihood (ML) algorithms, Neural Network (NN) and Support Vector Machine (SVM) algorithms were applied for fourteen different polarizations combination of multi temporal and multiple polarizations. The previous study was carried only four band combination of RISAT 1 data, the continuation of work both SAR data were used in this study. The Classification results are verified with confusion matrix. The pixel based classification gives the good results in the dual polarization of CRS – HH and HV of RISAT −1 compared to dual polarization Envisat ASAR data. Meanwhile the quad Polarization combination of Envisat ASAR data got better classification accuracy. The SVM classifiers has given better classification results for all band combination followed by ML and NN. The Scrub are better identified in EnviSat ASAR – VV & VH Polarization and Plantation are better identified in EnviSat ASAR – HH, HH-HV & HV Polarization. The classification accuracy of both Scrub and Plantation is about 80 % in EnviSat ASAR – HH, VH & VV Polarization combination. |
doi_str_mv | 10.5194/isprsarchives-XL-8-755-2014 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1757058807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922270441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9a2fda7734e816f81be494fe1130db1458aeb0af850a6d2cbbaebf100d7fb9f63</originalsourceid><addsrcrecordid>eNpVkEtLAzEQgIMoWLT_IdDzarKb7ANPffiCBcUq9BZms4lNrdmaZCv992apBz3N65sZ-BCaUHLFacWujd85D06uzV75ZFUnZVJwnqSEshM0SiOSVCRjp3_yczT2fkNIRPKcEz5Cdhn69oA7jRfGS2c-jYVgOotnKnwrZfHzFmw4tsC2eKGsV3gpXd_gGXjV4oEF-eElhKCcse9xdQ1707nh6jwO49py-oIXEOASnWnYejX-jRfo7e72df6Q1E_3j_NpnciM5SGpINUtFEXGVElzXdJGsYppRWlG2oYyXoJqCOiSE8jbVDZNrDUlpC10U-k8u0CT492d67565YPYdL2z8aWgBS8IL0tSROrmSEnXee-UFrtoANxBUCIGx-KfY7GqRSmiYzE4zn4A9KV11A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1757058807</pqid></control><display><type>conference_proceeding</type><title>Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB Electronic Journals Library</source><creator>Iyyappan, M. ; Ramakrishnan, S. S. ; Srinivasa Raju, K.</creator><creatorcontrib>Iyyappan, M. ; Ramakrishnan, S. S. ; Srinivasa Raju, K.</creatorcontrib><description>The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data. The backscattering coefficient were extracted for various land features from Cband SAR data. The training sample collecting from satellite optical imagery of study and field visit for verification. The training samples are used for the supervised classification technique of maximum Likelihood (ML) algorithms, Neural Network (NN) and Support Vector Machine (SVM) algorithms were applied for fourteen different polarizations combination of multi temporal and multiple polarizations. The previous study was carried only four band combination of RISAT 1 data, the continuation of work both SAR data were used in this study. The Classification results are verified with confusion matrix. The pixel based classification gives the good results in the dual polarization of CRS – HH and HV of RISAT −1 compared to dual polarization Envisat ASAR data. Meanwhile the quad Polarization combination of Envisat ASAR data got better classification accuracy. The SVM classifiers has given better classification results for all band combination followed by ML and NN. The Scrub are better identified in EnviSat ASAR – VV & VH Polarization and Plantation are better identified in EnviSat ASAR – HH, HH-HV & HV Polarization. The classification accuracy of both Scrub and Plantation is about 80 % in EnviSat ASAR – HH, VH & VV Polarization combination.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprsarchives-XL-8-755-2014</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2014, Vol.XL-8 (8), p.755-760</ispartof><rights>Copyright Copernicus GmbH 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9a2fda7734e816f81be494fe1130db1458aeb0af850a6d2cbbaebf100d7fb9f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1757058807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Iyyappan, M.</creatorcontrib><creatorcontrib>Ramakrishnan, S. S.</creatorcontrib><creatorcontrib>Srinivasa Raju, K.</creatorcontrib><title>Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data. The backscattering coefficient were extracted for various land features from Cband SAR data. The training sample collecting from satellite optical imagery of study and field visit for verification. The training samples are used for the supervised classification technique of maximum Likelihood (ML) algorithms, Neural Network (NN) and Support Vector Machine (SVM) algorithms were applied for fourteen different polarizations combination of multi temporal and multiple polarizations. The previous study was carried only four band combination of RISAT 1 data, the continuation of work both SAR data were used in this study. The Classification results are verified with confusion matrix. The pixel based classification gives the good results in the dual polarization of CRS – HH and HV of RISAT −1 compared to dual polarization Envisat ASAR data. Meanwhile the quad Polarization combination of Envisat ASAR data got better classification accuracy. The SVM classifiers has given better classification results for all band combination followed by ML and NN. The Scrub are better identified in EnviSat ASAR – VV & VH Polarization and Plantation are better identified in EnviSat ASAR – HH, HH-HV & HV Polarization. The classification accuracy of both Scrub and Plantation is about 80 % in EnviSat ASAR – HH, VH & VV Polarization combination.</description><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkEtLAzEQgIMoWLT_IdDzarKb7ANPffiCBcUq9BZms4lNrdmaZCv992apBz3N65sZ-BCaUHLFacWujd85D06uzV75ZFUnZVJwnqSEshM0SiOSVCRjp3_yczT2fkNIRPKcEz5Cdhn69oA7jRfGS2c-jYVgOotnKnwrZfHzFmw4tsC2eKGsV3gpXd_gGXjV4oEF-eElhKCcse9xdQ1707nh6jwO49py-oIXEOASnWnYejX-jRfo7e72df6Q1E_3j_NpnciM5SGpINUtFEXGVElzXdJGsYppRWlG2oYyXoJqCOiSE8jbVDZNrDUlpC10U-k8u0CT492d67565YPYdL2z8aWgBS8IL0tSROrmSEnXee-UFrtoANxBUCIGx-KfY7GqRSmiYzE4zn4A9KV11A</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Iyyappan, M.</creator><creator>Ramakrishnan, S. S.</creator><creator>Srinivasa Raju, K.</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data</title><author>Iyyappan, M. ; Ramakrishnan, S. S. ; Srinivasa Raju, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9a2fda7734e816f81be494fe1130db1458aeb0af850a6d2cbbaebf100d7fb9f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyyappan, M.</creatorcontrib><creatorcontrib>Ramakrishnan, S. S.</creatorcontrib><creatorcontrib>Srinivasa Raju, K.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyyappan, M.</au><au>Ramakrishnan, S. S.</au><au>Srinivasa Raju, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data</atitle><btitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</btitle><date>2014-01-01</date><risdate>2014</risdate><volume>XL-8</volume><issue>8</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data. The backscattering coefficient were extracted for various land features from Cband SAR data. The training sample collecting from satellite optical imagery of study and field visit for verification. The training samples are used for the supervised classification technique of maximum Likelihood (ML) algorithms, Neural Network (NN) and Support Vector Machine (SVM) algorithms were applied for fourteen different polarizations combination of multi temporal and multiple polarizations. The previous study was carried only four band combination of RISAT 1 data, the continuation of work both SAR data were used in this study. The Classification results are verified with confusion matrix. The pixel based classification gives the good results in the dual polarization of CRS – HH and HV of RISAT −1 compared to dual polarization Envisat ASAR data. Meanwhile the quad Polarization combination of Envisat ASAR data got better classification accuracy. The SVM classifiers has given better classification results for all band combination followed by ML and NN. The Scrub are better identified in EnviSat ASAR – VV & VH Polarization and Plantation are better identified in EnviSat ASAR – HH, HH-HV & HV Polarization. The classification accuracy of both Scrub and Plantation is about 80 % in EnviSat ASAR – HH, VH & VV Polarization combination.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprsarchives-XL-8-755-2014</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2014, Vol.XL-8 (8), p.755-760 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_proquest_journals_1757058807 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB Electronic Journals Library |
title | Study of Discrimination Between Plantation and Dense Scrub Based on Backscattering Behavior of C Band SAR Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20of%20Discrimination%20Between%20Plantation%20and%20Dense%20Scrub%20Based%20on%20Backscattering%20Behavior%20of%20C%20Band%20SAR%20Data&rft.btitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Iyyappan,%20M.&rft.date=2014-01-01&rft.volume=XL-8&rft.issue=8&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprsarchives-XL-8-755-2014&rft_dat=%3Cproquest_cross%3E3922270441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-9a2fda7734e816f81be494fe1130db1458aeb0af850a6d2cbbaebf100d7fb9f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757058807&rft_id=info:pmid/&rfr_iscdi=true |