Loading…
Solar Power Prediction Using Interval Type-2 TSK Modeling
The random nature of solar energy resources is one of the obstacles to their large-scale proliferation in power systems. The most practical way to predict this renewable source of energy is to use meteorological data. However, such data are usually provided in a qualitative form that cannot be explo...
Saved in:
Published in: | IEEE transactions on sustainable energy 2013-04, Vol.4 (2), p.333-339 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The random nature of solar energy resources is one of the obstacles to their large-scale proliferation in power systems. The most practical way to predict this renewable source of energy is to use meteorological data. However, such data are usually provided in a qualitative form that cannot be exploited using traditional quantitative methods but which can be modeled using fuzzy logic. This paper proposes type-1 and interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy systems for the modeling and prediction of solar power plants. The paper considers TSK models with type-1 antecedents and crisp consequents, type-1 antecedents and consequents, and type-2 antecedents and crisp consequents. The design methodology for tuning the antecedents and consequents of each model is described. Finally, input-output data sets from a solar plant are used to obtain the three TSK models and their prediction results are compared to results from the literature. The results show that type-2 TSK models with type2 antecedents and crisp consequents provide the best performance based on the solar plant data. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2012.2224893 |