Loading…

The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin

The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which u...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on terahertz science and technology 2015-11, Vol.5 (6), p.990-998
Main Authors: Truong, Bao C. Q., Tuan, Hoang Duong, Wallace, Vincent P., Fitzgerald, Anthony J., Nguyen, Hung T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3
cites cdi_FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3
container_end_page 998
container_issue 6
container_start_page 990
container_title IEEE transactions on terahertz science and technology
container_volume 5
creator Truong, Bao C. Q.
Tuan, Hoang Duong
Wallace, Vincent P.
Fitzgerald, Anthony J.
Nguyen, Hung T.
description The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which uses five parameters to fit experimental data. Skin tumors typically have a higher water content than normal tissues do, and this should be apparent in the parameters. The goal of this paper is to apply statistical methods to these parameters to test their power to differentiate skin cancer from normal tissue. Based on the prediction accuracy estimated using a cross-validation method, we found the best classifier was the static permittivity at low frequency (ε s ). By combining the most relevant parameters, we obtained a classification accuracy of 95.7%, confirming the classification capability of the parameters, thereby supporting their application to improve terahertz imaging for the purpose of skin cancer delineation.
doi_str_mv 10.1109/TTHZ.2015.2485208
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1759500288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7302086</ieee_id><sourcerecordid>3931983441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQXUTBUvsDxEvA89Z87-7RtmqFooIriJeQTWcxdbupSYr035vS0jnMDPPem2Fell0TPCYEV3d1Pf8aU0zEmPJSUFyeZQNKhMwZ5_L81NPPy2wUwgqnEJKVBR9ktv4G9OYi9NHqDrkWxTSYuW3TpQLNLqHa6zVE8AFFh2Y2GG_XttcR0ATiH0CPJjok8RS6lLQ3tndrjXS_RC_OrxPy_mP7q-yi1V2A0bEOs4_Hh3o6zxevT8_T-0VumGQx15gLznADjJeUyqVpC2grXUgs9LKtqGhIQRkzDUhD2wqTApdcayYNaYFjw4bZ7WHvxrvfLYSoVm7r-3RSkUJUAmNalolFDizjXQgeWrVJX2m_UwSrvalqb6ram6qOpibNzUFjAeDELxhOoGT_tFxySg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759500288</pqid></control><display><type>article</type><title>The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Truong, Bao C. Q. ; Tuan, Hoang Duong ; Wallace, Vincent P. ; Fitzgerald, Anthony J. ; Nguyen, Hung T.</creator><creatorcontrib>Truong, Bao C. Q. ; Tuan, Hoang Duong ; Wallace, Vincent P. ; Fitzgerald, Anthony J. ; Nguyen, Hung T.</creatorcontrib><description>The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which uses five parameters to fit experimental data. Skin tumors typically have a higher water content than normal tissues do, and this should be apparent in the parameters. The goal of this paper is to apply statistical methods to these parameters to test their power to differentiate skin cancer from normal tissue. Based on the prediction accuracy estimated using a cross-validation method, we found the best classifier was the static permittivity at low frequency (ε s ). By combining the most relevant parameters, we obtained a classification accuracy of 95.7%, confirming the classification capability of the parameters, thereby supporting their application to improve terahertz imaging for the purpose of skin cancer delineation.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2015.2485208</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Classification ; Correlation ; dielectric properties ; optimization ; Permittivity ; Skin ; Skin cancer ; Statistical analysis ; support vector machine ; Support vector machines ; terahertz (THz) ; Tumors</subject><ispartof>IEEE transactions on terahertz science and technology, 2015-11, Vol.5 (6), p.990-998</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3</citedby><cites>FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7302086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Truong, Bao C. Q.</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Wallace, Vincent P.</creatorcontrib><creatorcontrib>Fitzgerald, Anthony J.</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><title>The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which uses five parameters to fit experimental data. Skin tumors typically have a higher water content than normal tissues do, and this should be apparent in the parameters. The goal of this paper is to apply statistical methods to these parameters to test their power to differentiate skin cancer from normal tissue. Based on the prediction accuracy estimated using a cross-validation method, we found the best classifier was the static permittivity at low frequency (ε s ). By combining the most relevant parameters, we obtained a classification accuracy of 95.7%, confirming the classification capability of the parameters, thereby supporting their application to improve terahertz imaging for the purpose of skin cancer delineation.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Correlation</subject><subject>dielectric properties</subject><subject>optimization</subject><subject>Permittivity</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>Statistical analysis</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>terahertz (THz)</subject><subject>Tumors</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQXUTBUvsDxEvA89Z87-7RtmqFooIriJeQTWcxdbupSYr035vS0jnMDPPem2Fell0TPCYEV3d1Pf8aU0zEmPJSUFyeZQNKhMwZ5_L81NPPy2wUwgqnEJKVBR9ktv4G9OYi9NHqDrkWxTSYuW3TpQLNLqHa6zVE8AFFh2Y2GG_XttcR0ATiH0CPJjok8RS6lLQ3tndrjXS_RC_OrxPy_mP7q-yi1V2A0bEOs4_Hh3o6zxevT8_T-0VumGQx15gLznADjJeUyqVpC2grXUgs9LKtqGhIQRkzDUhD2wqTApdcayYNaYFjw4bZ7WHvxrvfLYSoVm7r-3RSkUJUAmNalolFDizjXQgeWrVJX2m_UwSrvalqb6ram6qOpibNzUFjAeDELxhOoGT_tFxySg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Truong, Bao C. Q.</creator><creator>Tuan, Hoang Duong</creator><creator>Wallace, Vincent P.</creator><creator>Fitzgerald, Anthony J.</creator><creator>Nguyen, Hung T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin</title><author>Truong, Bao C. Q. ; Tuan, Hoang Duong ; Wallace, Vincent P. ; Fitzgerald, Anthony J. ; Nguyen, Hung T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Correlation</topic><topic>dielectric properties</topic><topic>optimization</topic><topic>Permittivity</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>Statistical analysis</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>terahertz (THz)</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Bao C. Q.</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Wallace, Vincent P.</creatorcontrib><creatorcontrib>Fitzgerald, Anthony J.</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Bao C. Q.</au><au>Tuan, Hoang Duong</au><au>Wallace, Vincent P.</au><au>Fitzgerald, Anthony J.</au><au>Nguyen, Hung T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>5</volume><issue>6</issue><spage>990</spage><epage>998</epage><pages>990-998</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>The potential of terahertz imaging for improving the efficiency of Mohs's micrographic surgery in terms of tumor margin detection was previously studied. Thanks to high water content of human skin, its dielectric response to terahertz radiation can be described by the double Debye model which uses five parameters to fit experimental data. Skin tumors typically have a higher water content than normal tissues do, and this should be apparent in the parameters. The goal of this paper is to apply statistical methods to these parameters to test their power to differentiate skin cancer from normal tissue. Based on the prediction accuracy estimated using a cross-validation method, we found the best classifier was the static permittivity at low frequency (ε s ). By combining the most relevant parameters, we obtained a classification accuracy of 95.7%, confirming the classification capability of the parameters, thereby supporting their application to improve terahertz imaging for the purpose of skin cancer delineation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTHZ.2015.2485208</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-342X
ispartof IEEE transactions on terahertz science and technology, 2015-11, Vol.5 (6), p.990-998
issn 2156-342X
2156-3446
language eng
recordid cdi_proquest_journals_1759500288
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Classification
Correlation
dielectric properties
optimization
Permittivity
Skin
Skin cancer
Statistical analysis
support vector machine
Support vector machines
terahertz (THz)
Tumors
title The Potential of the Double Debye Parameters to Discriminate Between Basal Cell Carcinoma and Normal Skin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Potential%20of%20the%20Double%20Debye%20Parameters%20to%20Discriminate%20Between%20Basal%20Cell%20Carcinoma%20and%20Normal%20Skin&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Truong,%20Bao%20C.%20Q.&rft.date=2015-11-01&rft.volume=5&rft.issue=6&rft.spage=990&rft.epage=998&rft.pages=990-998&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2015.2485208&rft_dat=%3Cproquest_ieee_%3E3931983441%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-a045430be348226dcf7ef9a7605adf925b17233cbe6c2f9017084aa36c1fe40c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759500288&rft_id=info:pmid/&rft_ieee_id=7302086&rfr_iscdi=true