Loading…

On robust properties of the SIML estimation of volatility under micro-market noise and random sampling

For estimating the integrated volatility and covariance by using high frequency data, Kunitomo and Sato (2008, 2011) have proposed the Separating Information Maximum Likelihood (SIML) method when there are micro-market noises. The SIML estimator has reasonable finite sample properties and asymptotic...

Full description

Saved in:
Bibliographic Details
Published in:International review of economics & finance 2015-11, Vol.40, p.265-281
Main Authors: Misaki, Hiroumi, Kunitomo, Naoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363
cites cdi_FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363
container_end_page 281
container_issue
container_start_page 265
container_title International review of economics & finance
container_volume 40
creator Misaki, Hiroumi
Kunitomo, Naoto
description For estimating the integrated volatility and covariance by using high frequency data, Kunitomo and Sato (2008, 2011) have proposed the Separating Information Maximum Likelihood (SIML) method when there are micro-market noises. The SIML estimator has reasonable finite sample properties and asymptotic properties when the sample size is large under general conditions with non-Gaussian processes or volatility models. We shall show that the SIML estimator has the asymptotic robustness property in the sense that it is consistent and has the stable convergence (i.e. the asymptotic normality in the deterministic case) as well as reasonable finite sample properties when there are micro-market noises and the observed high-frequency data are sampled randomly with the underlying (continuous time) stochastic process. We also discuss some implications of our results on public policy and risk managements in financial markets.
doi_str_mv 10.1016/j.iref.2015.02.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1760044909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1059056015000465</els_id><sourcerecordid>3932788261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPAU8d52mTdqAF1n8WFjZg3oO2WaqqW1Tk1TYf2_KehaGmWF4b-bNS5LrDFYZZPy2XRmHzYpCxlZAYxQnySKryjytIOensQcmUmAczpML71sAoHkhFkmzG4iz-8kHMjo7ogsGPbENCZ9IXjcvW4I-mF4FY4d5_GO72HcmHMg0aHSkN7Wzaa_cFwYyWOORqEETF5PtiVf92Jnh4zI5a1Tn8eqvLpP3x4e39XO63T1t1vfbtGaUhVRhg5lWnJdY1rnQFS01U_W-bFBUTINSVOu8xAprFEArJjRHVlTFnotG5DxfJjfHvfGZ7ylKl62d3BBPyqzkAEUhQEQUPaKidO-jcXJ08Ud3kBnI2U_ZytlPOfspgcYoIunuSMKo_8egk742ONSoI7QOUlvzH_0X4meAOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760044909</pqid></control><display><type>article</type><title>On robust properties of the SIML estimation of volatility under micro-market noise and random sampling</title><source>ScienceDirect Freedom Collection</source><creator>Misaki, Hiroumi ; Kunitomo, Naoto</creator><creatorcontrib>Misaki, Hiroumi ; Kunitomo, Naoto</creatorcontrib><description>For estimating the integrated volatility and covariance by using high frequency data, Kunitomo and Sato (2008, 2011) have proposed the Separating Information Maximum Likelihood (SIML) method when there are micro-market noises. The SIML estimator has reasonable finite sample properties and asymptotic properties when the sample size is large under general conditions with non-Gaussian processes or volatility models. We shall show that the SIML estimator has the asymptotic robustness property in the sense that it is consistent and has the stable convergence (i.e. the asymptotic normality in the deterministic case) as well as reasonable finite sample properties when there are micro-market noises and the observed high-frequency data are sampled randomly with the underlying (continuous time) stochastic process. We also discuss some implications of our results on public policy and risk managements in financial markets.</description><identifier>ISSN: 1059-0560</identifier><identifier>EISSN: 1873-8036</identifier><identifier>DOI: 10.1016/j.iref.2015.02.024</identifier><language>eng</language><publisher>Greenwich: Elsevier Inc</publisher><subject>Asymptotic robustness ; Estimating techniques ; High-frequency data ; Integrated volatility with micro-market noise ; Maximum likelihood method ; Public policy ; Random sampling ; Risk management ; Securities markets ; Separating Information Maximum Likelihood (SIML) ; Studies ; Volatility</subject><ispartof>International review of economics &amp; finance, 2015-11, Vol.40, p.265-281</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363</citedby><cites>FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Misaki, Hiroumi</creatorcontrib><creatorcontrib>Kunitomo, Naoto</creatorcontrib><title>On robust properties of the SIML estimation of volatility under micro-market noise and random sampling</title><title>International review of economics &amp; finance</title><description>For estimating the integrated volatility and covariance by using high frequency data, Kunitomo and Sato (2008, 2011) have proposed the Separating Information Maximum Likelihood (SIML) method when there are micro-market noises. The SIML estimator has reasonable finite sample properties and asymptotic properties when the sample size is large under general conditions with non-Gaussian processes or volatility models. We shall show that the SIML estimator has the asymptotic robustness property in the sense that it is consistent and has the stable convergence (i.e. the asymptotic normality in the deterministic case) as well as reasonable finite sample properties when there are micro-market noises and the observed high-frequency data are sampled randomly with the underlying (continuous time) stochastic process. We also discuss some implications of our results on public policy and risk managements in financial markets.</description><subject>Asymptotic robustness</subject><subject>Estimating techniques</subject><subject>High-frequency data</subject><subject>Integrated volatility with micro-market noise</subject><subject>Maximum likelihood method</subject><subject>Public policy</subject><subject>Random sampling</subject><subject>Risk management</subject><subject>Securities markets</subject><subject>Separating Information Maximum Likelihood (SIML)</subject><subject>Studies</subject><subject>Volatility</subject><issn>1059-0560</issn><issn>1873-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoHPAU8d52mTdqAF1n8WFjZg3oO2WaqqW1Tk1TYf2_KehaGmWF4b-bNS5LrDFYZZPy2XRmHzYpCxlZAYxQnySKryjytIOensQcmUmAczpML71sAoHkhFkmzG4iz-8kHMjo7ogsGPbENCZ9IXjcvW4I-mF4FY4d5_GO72HcmHMg0aHSkN7Wzaa_cFwYyWOORqEETF5PtiVf92Jnh4zI5a1Tn8eqvLpP3x4e39XO63T1t1vfbtGaUhVRhg5lWnJdY1rnQFS01U_W-bFBUTINSVOu8xAprFEArJjRHVlTFnotG5DxfJjfHvfGZ7ylKl62d3BBPyqzkAEUhQEQUPaKidO-jcXJ08Ud3kBnI2U_ZytlPOfspgcYoIunuSMKo_8egk742ONSoI7QOUlvzH_0X4meAOg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Misaki, Hiroumi</creator><creator>Kunitomo, Naoto</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>On robust properties of the SIML estimation of volatility under micro-market noise and random sampling</title><author>Misaki, Hiroumi ; Kunitomo, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic robustness</topic><topic>Estimating techniques</topic><topic>High-frequency data</topic><topic>Integrated volatility with micro-market noise</topic><topic>Maximum likelihood method</topic><topic>Public policy</topic><topic>Random sampling</topic><topic>Risk management</topic><topic>Securities markets</topic><topic>Separating Information Maximum Likelihood (SIML)</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misaki, Hiroumi</creatorcontrib><creatorcontrib>Kunitomo, Naoto</creatorcontrib><collection>CrossRef</collection><jtitle>International review of economics &amp; finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misaki, Hiroumi</au><au>Kunitomo, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On robust properties of the SIML estimation of volatility under micro-market noise and random sampling</atitle><jtitle>International review of economics &amp; finance</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>40</volume><spage>265</spage><epage>281</epage><pages>265-281</pages><issn>1059-0560</issn><eissn>1873-8036</eissn><abstract>For estimating the integrated volatility and covariance by using high frequency data, Kunitomo and Sato (2008, 2011) have proposed the Separating Information Maximum Likelihood (SIML) method when there are micro-market noises. The SIML estimator has reasonable finite sample properties and asymptotic properties when the sample size is large under general conditions with non-Gaussian processes or volatility models. We shall show that the SIML estimator has the asymptotic robustness property in the sense that it is consistent and has the stable convergence (i.e. the asymptotic normality in the deterministic case) as well as reasonable finite sample properties when there are micro-market noises and the observed high-frequency data are sampled randomly with the underlying (continuous time) stochastic process. We also discuss some implications of our results on public policy and risk managements in financial markets.</abstract><cop>Greenwich</cop><pub>Elsevier Inc</pub><doi>10.1016/j.iref.2015.02.024</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-0560
ispartof International review of economics & finance, 2015-11, Vol.40, p.265-281
issn 1059-0560
1873-8036
language eng
recordid cdi_proquest_journals_1760044909
source ScienceDirect Freedom Collection
subjects Asymptotic robustness
Estimating techniques
High-frequency data
Integrated volatility with micro-market noise
Maximum likelihood method
Public policy
Random sampling
Risk management
Securities markets
Separating Information Maximum Likelihood (SIML)
Studies
Volatility
title On robust properties of the SIML estimation of volatility under micro-market noise and random sampling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20robust%20properties%20of%20the%20SIML%20estimation%20of%20volatility%20under%20micro-market%20noise%20and%20random%20sampling&rft.jtitle=International%20review%20of%20economics%20&%20finance&rft.au=Misaki,%20Hiroumi&rft.date=2015-11-01&rft.volume=40&rft.spage=265&rft.epage=281&rft.pages=265-281&rft.issn=1059-0560&rft.eissn=1873-8036&rft_id=info:doi/10.1016/j.iref.2015.02.024&rft_dat=%3Cproquest_cross%3E3932788261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-aefe1da667e7c39d827d5acb7fe985d0aa2dd37e8ece902859d6e5484b69f9363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760044909&rft_id=info:pmid/&rfr_iscdi=true