Loading…

Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory

The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only consider...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical education 2016-01, Vol.93 (1), p.111-117
Main Authors: García-Fernández, Pablo, Moreno, Miguel, Aramburu, José Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3
cites cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3
container_end_page 117
container_issue 1
container_start_page 111
container_title Journal of chemical education
container_volume 93
creator García-Fernández, Pablo
Moreno, Miguel
Aramburu, José Antonio
description The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.
doi_str_mv 10.1021/acs.jchemed.5b00288
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1760921075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1088169</ericid><sourcerecordid>3935356611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</originalsourceid><addsrcrecordid>eNp9kN1KwzAUx4MoOKdPIELA625Ju6aJd3PsQxnMi3ldsuaky2ibmnSwPYJvbeaGl14dOOf_cfgh9EjJgJKYDmXhB7tiCzWoQbohJOb8CvWoSHhEk5hfo17Y0UikfHSL7rzfEULjVPAe-l45U5oGW427LeBxY2tZ2b3HE1tZd1pPy2PbGdlg2Si8CPO12gNeGN9ZZwpZ4Q9T1tB0_gXPrWlKvIGjDdJT3MTWbQUHPG5bZw-mlp2xDQ51S1Oe4mYGKoXXW7DueI9utKw8PFxmH33OpuvJIlqu5m-T8TKSSSK6CGJFOGMjNQJWsJSnnGVaCyC6KORGEaYVA0VpmnGpCVOgRUY2bCS44iTVRdJHz-fc8NLXHnyX7-zeNaEypxkjIqYkS4MqOasKZ713oPPWhf_dMackPzHPA_P8wjy_MA-up7MLApo_x_SdEs4pE-E-PN9_zX-1_yT-AJFUktM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760921075</pqid></control><display><type>article</type><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><source>ERIC</source><creator>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</creator><creatorcontrib>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</creatorcontrib><description>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.5b00288</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Approximation ; Beryl ; Chemical compounds ; Chemistry ; Chromophores ; Cobalt oxides ; College Science ; Color ; Complexity ; Coordination compounds ; Crystal structure ; Crystallinity ; Electric fields ; Field theory ; Graduate Study ; Ligands ; Mathematical analysis ; Metal compounds ; Misconceptions ; Optical properties ; Optics ; Perovskites ; Pigments ; Ruby ; Science Instruction ; Scientific Concepts ; Spectroscopy ; Theory ; Transition metal compounds ; Undergraduate Study</subject><ispartof>Journal of chemical education, 2016-01, Vol.93 (1), p.111-117</ispartof><rights>Copyright © 2015 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Jan 12, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</citedby><cites>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1088169$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Fernández, Pablo</creatorcontrib><creatorcontrib>Moreno, Miguel</creatorcontrib><creatorcontrib>Aramburu, José Antonio</creatorcontrib><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</description><subject>Approximation</subject><subject>Beryl</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chromophores</subject><subject>Cobalt oxides</subject><subject>College Science</subject><subject>Color</subject><subject>Complexity</subject><subject>Coordination compounds</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electric fields</subject><subject>Field theory</subject><subject>Graduate Study</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Metal compounds</subject><subject>Misconceptions</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Perovskites</subject><subject>Pigments</subject><subject>Ruby</subject><subject>Science Instruction</subject><subject>Scientific Concepts</subject><subject>Spectroscopy</subject><subject>Theory</subject><subject>Transition metal compounds</subject><subject>Undergraduate Study</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kN1KwzAUx4MoOKdPIELA625Ju6aJd3PsQxnMi3ldsuaky2ibmnSwPYJvbeaGl14dOOf_cfgh9EjJgJKYDmXhB7tiCzWoQbohJOb8CvWoSHhEk5hfo17Y0UikfHSL7rzfEULjVPAe-l45U5oGW427LeBxY2tZ2b3HE1tZd1pPy2PbGdlg2Si8CPO12gNeGN9ZZwpZ4Q9T1tB0_gXPrWlKvIGjDdJT3MTWbQUHPG5bZw-mlp2xDQ51S1Oe4mYGKoXXW7DueI9utKw8PFxmH33OpuvJIlqu5m-T8TKSSSK6CGJFOGMjNQJWsJSnnGVaCyC6KORGEaYVA0VpmnGpCVOgRUY2bCS44iTVRdJHz-fc8NLXHnyX7-zeNaEypxkjIqYkS4MqOasKZ713oPPWhf_dMackPzHPA_P8wjy_MA-up7MLApo_x_SdEs4pE-E-PN9_zX-1_yT-AJFUktM</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>García-Fernández, Pablo</creator><creator>Moreno, Miguel</creator><creator>Aramburu, José Antonio</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20160112</creationdate><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><author>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Beryl</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chromophores</topic><topic>Cobalt oxides</topic><topic>College Science</topic><topic>Color</topic><topic>Complexity</topic><topic>Coordination compounds</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electric fields</topic><topic>Field theory</topic><topic>Graduate Study</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Metal compounds</topic><topic>Misconceptions</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Perovskites</topic><topic>Pigments</topic><topic>Ruby</topic><topic>Science Instruction</topic><topic>Scientific Concepts</topic><topic>Spectroscopy</topic><topic>Theory</topic><topic>Transition metal compounds</topic><topic>Undergraduate Study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Fernández, Pablo</creatorcontrib><creatorcontrib>Moreno, Miguel</creatorcontrib><creatorcontrib>Aramburu, José Antonio</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Fernández, Pablo</au><au>Moreno, Miguel</au><au>Aramburu, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1088169</ericid><atitle>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2016-01-12</date><risdate>2016</risdate><volume>93</volume><issue>1</issue><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.5b00288</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2016-01, Vol.93 (1), p.111-117
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_1760921075
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list); ERIC
subjects Approximation
Beryl
Chemical compounds
Chemistry
Chromophores
Cobalt oxides
College Science
Color
Complexity
Coordination compounds
Crystal structure
Crystallinity
Electric fields
Field theory
Graduate Study
Ligands
Mathematical analysis
Metal compounds
Misconceptions
Optical properties
Optics
Perovskites
Pigments
Ruby
Science Instruction
Scientific Concepts
Spectroscopy
Theory
Transition metal compounds
Undergraduate Study
title Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20Anomalous%20Color%20of%20Egyptian%20and%20Han%20Blue%20Historical%20Pigments:%20Going%20beyond%20the%20Complex%20Approximation%20in%20Ligand%20Field%20Theory&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Garci%CC%81a-Ferna%CC%81ndez,%20Pablo&rft.date=2016-01-12&rft.volume=93&rft.issue=1&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/acs.jchemed.5b00288&rft_dat=%3Cproquest_cross%3E3935356611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760921075&rft_id=info:pmid/&rft_ericid=EJ1088169&rfr_iscdi=true