Loading…
Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory
The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only consider...
Saved in:
Published in: | Journal of chemical education 2016-01, Vol.93 (1), p.111-117 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 111 |
container_title | Journal of chemical education |
container_volume | 93 |
creator | García-Fernández, Pablo Moreno, Miguel Aramburu, José Antonio |
description | The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized. |
doi_str_mv | 10.1021/acs.jchemed.5b00288 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1760921075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1088169</ericid><sourcerecordid>3935356611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</originalsourceid><addsrcrecordid>eNp9kN1KwzAUx4MoOKdPIELA625Ju6aJd3PsQxnMi3ldsuaky2ibmnSwPYJvbeaGl14dOOf_cfgh9EjJgJKYDmXhB7tiCzWoQbohJOb8CvWoSHhEk5hfo17Y0UikfHSL7rzfEULjVPAe-l45U5oGW427LeBxY2tZ2b3HE1tZd1pPy2PbGdlg2Si8CPO12gNeGN9ZZwpZ4Q9T1tB0_gXPrWlKvIGjDdJT3MTWbQUHPG5bZw-mlp2xDQ51S1Oe4mYGKoXXW7DueI9utKw8PFxmH33OpuvJIlqu5m-T8TKSSSK6CGJFOGMjNQJWsJSnnGVaCyC6KORGEaYVA0VpmnGpCVOgRUY2bCS44iTVRdJHz-fc8NLXHnyX7-zeNaEypxkjIqYkS4MqOasKZ713oPPWhf_dMackPzHPA_P8wjy_MA-up7MLApo_x_SdEs4pE-E-PN9_zX-1_yT-AJFUktM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760921075</pqid></control><display><type>article</type><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><source>ERIC</source><creator>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</creator><creatorcontrib>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</creatorcontrib><description>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.5b00288</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Approximation ; Beryl ; Chemical compounds ; Chemistry ; Chromophores ; Cobalt oxides ; College Science ; Color ; Complexity ; Coordination compounds ; Crystal structure ; Crystallinity ; Electric fields ; Field theory ; Graduate Study ; Ligands ; Mathematical analysis ; Metal compounds ; Misconceptions ; Optical properties ; Optics ; Perovskites ; Pigments ; Ruby ; Science Instruction ; Scientific Concepts ; Spectroscopy ; Theory ; Transition metal compounds ; Undergraduate Study</subject><ispartof>Journal of chemical education, 2016-01, Vol.93 (1), p.111-117</ispartof><rights>Copyright © 2015 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Jan 12, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</citedby><cites>FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1088169$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Fernández, Pablo</creatorcontrib><creatorcontrib>Moreno, Miguel</creatorcontrib><creatorcontrib>Aramburu, José Antonio</creatorcontrib><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</description><subject>Approximation</subject><subject>Beryl</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chromophores</subject><subject>Cobalt oxides</subject><subject>College Science</subject><subject>Color</subject><subject>Complexity</subject><subject>Coordination compounds</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electric fields</subject><subject>Field theory</subject><subject>Graduate Study</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Metal compounds</subject><subject>Misconceptions</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Perovskites</subject><subject>Pigments</subject><subject>Ruby</subject><subject>Science Instruction</subject><subject>Scientific Concepts</subject><subject>Spectroscopy</subject><subject>Theory</subject><subject>Transition metal compounds</subject><subject>Undergraduate Study</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kN1KwzAUx4MoOKdPIELA625Ju6aJd3PsQxnMi3ldsuaky2ibmnSwPYJvbeaGl14dOOf_cfgh9EjJgJKYDmXhB7tiCzWoQbohJOb8CvWoSHhEk5hfo17Y0UikfHSL7rzfEULjVPAe-l45U5oGW427LeBxY2tZ2b3HE1tZd1pPy2PbGdlg2Si8CPO12gNeGN9ZZwpZ4Q9T1tB0_gXPrWlKvIGjDdJT3MTWbQUHPG5bZw-mlp2xDQ51S1Oe4mYGKoXXW7DueI9utKw8PFxmH33OpuvJIlqu5m-T8TKSSSK6CGJFOGMjNQJWsJSnnGVaCyC6KORGEaYVA0VpmnGpCVOgRUY2bCS44iTVRdJHz-fc8NLXHnyX7-zeNaEypxkjIqYkS4MqOasKZ713oPPWhf_dMackPzHPA_P8wjy_MA-up7MLApo_x_SdEs4pE-E-PN9_zX-1_yT-AJFUktM</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>García-Fernández, Pablo</creator><creator>Moreno, Miguel</creator><creator>Aramburu, José Antonio</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20160112</creationdate><title>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</title><author>García-Fernández, Pablo ; Moreno, Miguel ; Aramburu, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Beryl</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chromophores</topic><topic>Cobalt oxides</topic><topic>College Science</topic><topic>Color</topic><topic>Complexity</topic><topic>Coordination compounds</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electric fields</topic><topic>Field theory</topic><topic>Graduate Study</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Metal compounds</topic><topic>Misconceptions</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Perovskites</topic><topic>Pigments</topic><topic>Ruby</topic><topic>Science Instruction</topic><topic>Scientific Concepts</topic><topic>Spectroscopy</topic><topic>Theory</topic><topic>Transition metal compounds</topic><topic>Undergraduate Study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Fernández, Pablo</creatorcontrib><creatorcontrib>Moreno, Miguel</creatorcontrib><creatorcontrib>Aramburu, José Antonio</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Fernández, Pablo</au><au>Moreno, Miguel</au><au>Aramburu, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1088169</ericid><atitle>Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2016-01-12</date><risdate>2016</risdate><volume>93</volume><issue>1</issue><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium geometry. We also show that a quantitative understanding of such optical transitions cannot, in general, be reached unless the internal electric field, E R(r), created by the whole crystal on active electrons confined in the complex, is also taken into consideration. Seeking to prove the key role played by this internal field, usually ignored in crystalline transition metal compounds, we focus on the origin of the color displayed by the Egyptian Blue pigment (CaCuSi4O10), the first ever synthesized by humans. This pigment, together with Han Blue (BaCuSi4O10), are chosen as model systems because the anisotropic E R(r) field produces huge shifts, up to ∼0.9 eV, in their d–d transitions, which are unusual compared to the majority of compounds containing the same square-planar CuO4 6– chromophore. The relevance of the internal field for explaining phenomena such as the distinct color of ruby and emerald or the optical spectrum of CuF6 4– complexes in layered perovskites is also emphasized.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.5b00288</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2016-01, Vol.93 (1), p.111-117 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_1760921075 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list); ERIC |
subjects | Approximation Beryl Chemical compounds Chemistry Chromophores Cobalt oxides College Science Color Complexity Coordination compounds Crystal structure Crystallinity Electric fields Field theory Graduate Study Ligands Mathematical analysis Metal compounds Misconceptions Optical properties Optics Perovskites Pigments Ruby Science Instruction Scientific Concepts Spectroscopy Theory Transition metal compounds Undergraduate Study |
title | Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20Anomalous%20Color%20of%20Egyptian%20and%20Han%20Blue%20Historical%20Pigments:%20Going%20beyond%20the%20Complex%20Approximation%20in%20Ligand%20Field%20Theory&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Garci%CC%81a-Ferna%CC%81ndez,%20Pablo&rft.date=2016-01-12&rft.volume=93&rft.issue=1&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/acs.jchemed.5b00288&rft_dat=%3Cproquest_cross%3E3935356611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a339t-e2d08664d4e6c6585867ff9e0fccabd06fd6ed11578af06def970b6498d805fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760921075&rft_id=info:pmid/&rft_ericid=EJ1088169&rfr_iscdi=true |