Loading…

Semiparametric quasi-likelihood estimation with missing data

This article develops quasi-likelihood estimation for generalized varying coefficient partially linear models when the response is not always observable. This article considers two estimation methods and shows that under the assumption of selection on the observables the resulting estimators are asy...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2016-03, Vol.45 (5), p.1345-1369
Main Authors: Bravo, Francesco, Jacho-Chávez, David T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3
cites cdi_FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3
container_end_page 1369
container_issue 5
container_start_page 1345
container_title Communications in statistics. Theory and methods
container_volume 45
creator Bravo, Francesco
Jacho-Chávez, David T.
description This article develops quasi-likelihood estimation for generalized varying coefficient partially linear models when the response is not always observable. This article considers two estimation methods and shows that under the assumption of selection on the observables the resulting estimators are asymptotically normal. As an application of these results this article proposes a new estimator for the average treatment effect parameter. A simulation study illustrates the finite sample properties of the proposed estimators.
doi_str_mv 10.1080/03610926.2013.863928
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1766271665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793275907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcFN2465tU8QBARXzDgQgV3IWlTJ2PbzCQtw_x7U6obF67u5juHcz8AzhFcICjgFSQMQYnZAkNEFoIRicUBmKGC4Jyi4uMQzEYkH5ljcBLjGkJUcEFm4PrVtm6jg25tH1yZbQcdXd64L9u4lfdVZmPvWt0732U716-y1sXous-s0r0-BUe1bqI9-7lz8P5w_3b3lC9fHp_vbpd5SRHtc0RRBZElpi4tkZILRpkglmjIBOZGCEq0KCVniGLNLWMSmdIYU0NjJNSazMHl1LsJfjukRSqtKG3T6M76ISrEJcG8kJAn9OIPuvZD6NK6RDGGOWKsSBSdqDL4GIOt1SakL8NeIahGpepXqRqVqklpit1MMdfVPrR650NTqV7vGx_qoLvSRUX-bfgGPfx8MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766271665</pqid></control><display><type>article</type><title>Semiparametric quasi-likelihood estimation with missing data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Bravo, Francesco ; Jacho-Chávez, David T.</creator><creatorcontrib>Bravo, Francesco ; Jacho-Chávez, David T.</creatorcontrib><description>This article develops quasi-likelihood estimation for generalized varying coefficient partially linear models when the response is not always observable. This article considers two estimation methods and shows that under the assumption of selection on the observables the resulting estimators are asymptotically normal. As an application of these results this article proposes a new estimator for the average treatment effect parameter. A simulation study illustrates the finite sample properties of the proposed estimators.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2013.863928</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Asymptotic properties ; Backfitting ; Computer simulation ; Double robustness ; Econometrics ; Economic models ; Estimators ; Inverse probability weighting ; Mathematical analysis ; Mathematical models ; Primary: 62G08 ; Profiling ; Samples ; Secondary: 62G20 ; Statistical analysis ; Statistics ; Unconfoundness</subject><ispartof>Communications in statistics. Theory and methods, 2016-03, Vol.45 (5), p.1345-1369</ispartof><rights>2016 Taylor &amp; Francis Group, LLC 2016</rights><rights>2016 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3</citedby><cites>FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bravo, Francesco</creatorcontrib><creatorcontrib>Jacho-Chávez, David T.</creatorcontrib><title>Semiparametric quasi-likelihood estimation with missing data</title><title>Communications in statistics. Theory and methods</title><description>This article develops quasi-likelihood estimation for generalized varying coefficient partially linear models when the response is not always observable. This article considers two estimation methods and shows that under the assumption of selection on the observables the resulting estimators are asymptotically normal. As an application of these results this article proposes a new estimator for the average treatment effect parameter. A simulation study illustrates the finite sample properties of the proposed estimators.</description><subject>Asymptotic properties</subject><subject>Backfitting</subject><subject>Computer simulation</subject><subject>Double robustness</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimators</subject><subject>Inverse probability weighting</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Primary: 62G08</subject><subject>Profiling</subject><subject>Samples</subject><subject>Secondary: 62G20</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Unconfoundness</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcFN2465tU8QBARXzDgQgV3IWlTJ2PbzCQtw_x7U6obF67u5juHcz8AzhFcICjgFSQMQYnZAkNEFoIRicUBmKGC4Jyi4uMQzEYkH5ljcBLjGkJUcEFm4PrVtm6jg25tH1yZbQcdXd64L9u4lfdVZmPvWt0732U716-y1sXous-s0r0-BUe1bqI9-7lz8P5w_3b3lC9fHp_vbpd5SRHtc0RRBZElpi4tkZILRpkglmjIBOZGCEq0KCVniGLNLWMSmdIYU0NjJNSazMHl1LsJfjukRSqtKG3T6M76ISrEJcG8kJAn9OIPuvZD6NK6RDGGOWKsSBSdqDL4GIOt1SakL8NeIahGpepXqRqVqklpit1MMdfVPrR650NTqV7vGx_qoLvSRUX-bfgGPfx8MA</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Bravo, Francesco</creator><creator>Jacho-Chávez, David T.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160303</creationdate><title>Semiparametric quasi-likelihood estimation with missing data</title><author>Bravo, Francesco ; Jacho-Chávez, David T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Backfitting</topic><topic>Computer simulation</topic><topic>Double robustness</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimators</topic><topic>Inverse probability weighting</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Primary: 62G08</topic><topic>Profiling</topic><topic>Samples</topic><topic>Secondary: 62G20</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Unconfoundness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravo, Francesco</creatorcontrib><creatorcontrib>Jacho-Chávez, David T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravo, Francesco</au><au>Jacho-Chávez, David T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric quasi-likelihood estimation with missing data</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2016-03-03</date><risdate>2016</risdate><volume>45</volume><issue>5</issue><spage>1345</spage><epage>1369</epage><pages>1345-1369</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>This article develops quasi-likelihood estimation for generalized varying coefficient partially linear models when the response is not always observable. This article considers two estimation methods and shows that under the assumption of selection on the observables the resulting estimators are asymptotically normal. As an application of these results this article proposes a new estimator for the average treatment effect parameter. A simulation study illustrates the finite sample properties of the proposed estimators.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2013.863928</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2016-03, Vol.45 (5), p.1345-1369
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_1766271665
source Taylor and Francis Science and Technology Collection
subjects Asymptotic properties
Backfitting
Computer simulation
Double robustness
Econometrics
Economic models
Estimators
Inverse probability weighting
Mathematical analysis
Mathematical models
Primary: 62G08
Profiling
Samples
Secondary: 62G20
Statistical analysis
Statistics
Unconfoundness
title Semiparametric quasi-likelihood estimation with missing data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20quasi-likelihood%20estimation%20with%20missing%20data&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Bravo,%20Francesco&rft.date=2016-03-03&rft.volume=45&rft.issue=5&rft.spage=1345&rft.epage=1369&rft.pages=1345-1369&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2013.863928&rft_dat=%3Cproquest_infor%3E1793275907%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-141d01e3bfce3997864683e3a06827b8843a8c976142a7e6691bcbbbf0bb90aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766271665&rft_id=info:pmid/&rfr_iscdi=true