Loading…

Synthesis of Ultrafine Mesoporous Tungsten Carbide by High-energy Ball Milling and Its Electrocatalytic Activity for Methanol Oxidation

Ultrafine mesoporous tungsten carbide (WC) was prepared from as-synthesized mesoporous WC using high-energy ball milling treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption techniques were used to characterize the samples. Brunauer-Emmett-Teller...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry 2011-04, Vol.29 (4), p.611-616
Main Author: 马淳安 陈赵扬 赵峰鸣
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafine mesoporous tungsten carbide (WC) was prepared from as-synthesized mesoporous WC using high-energy ball milling treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption techniques were used to characterize the samples. Brunauer-Emmett-Teller (BET) surface areas of WC samples increased with the increasing ball milling time and kept constant at 10-11 mZog 1 for over 9 h. The electrocatalytic properties of methanol electro-oxidation at WC powder microelectrodes were investigated by cyclic voltammetry, chronoamperometry, and quasi-steady-state polarization techniques. The results reveal that ball-milled WC exhibits higher activity for methanol electro-oxidation than as-synthesized mesoporous WC. The suitability of ball-milled WC for methanol electro-oxidation is better than platinum (Pt) micro-disk, although the current peak is not as high as the Pt micro-disk. Moreover, increasing the methanol concentration and reaction temperature promotes methanol electro-oxidation on ultrafine mesoporous WC.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201190130