Loading…
Quantitative Three‐Dimensional Analysis of Embryonic Chick Morphogenesis Via Microcomputed Tomography
Embryonic development is a remarkably complex and rapidly evolving morphogenetic process. Although many of the early patterning events have been well described, understanding the anatomical changes at later stages where clinically relevant malformations are more likely to be survivable has been limi...
Saved in:
Published in: | Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2011-01, Vol.294 (1), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Embryonic development is a remarkably complex and rapidly evolving morphogenetic process. Although many of the early patterning events have been well described, understanding the anatomical changes at later stages where clinically relevant malformations are more likely to be survivable has been limited by the lack of quantitative 3D imaging tools. Microcomputed tomography (Micro‐CT) has emerged as a powerful tool for embryonic imaging, but a quantitative analysis of organ and tissue growth has not been conducted. In this study, we present a simple method for acquiring highly detailed, quantitative 3D datasets of embryonic chicks with Micro‐CT. Embryos between 4 and 12 days (HH23 and HH40) were labeled with osmium tetroxide (OT), which revealed highly detailed soft tissue anatomy when scanned at 25 μm resolution. We demonstrate tissue boundary and inter‐tissue contrast fidelity in virtual 2D sections are quantitatively and qualitatively similar to those of histological sections. We then establish mathematical relationships for the volumetric growth of heart, limb, eye, and brain during this period of development. We show that some organs exhibit constant exponential growth (eye and heart), whereas others contained multiple phases of growth (forebrain and limb). Furthermore, we show that cardiac myocardial volumetric growth differs in a time and chamber specific manner. These results demonstrate Micro‐CT is a powerful technique for quantitative imaging of embryonic growth. The data presented here establish baselines from which to compare the effects of genetic or experimental perturbations. Quantifying subtle differences in morphogenesis is increasingly important as research focuses on localized and conditional effects. Anat Rec,, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1932-8486 1932-8494 |
DOI: | 10.1002/ar.21276 |