Loading…

Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters

Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of...

Full description

Saved in:
Bibliographic Details
Published in:Revista Colombiana de estadística 2016-01, Vol.39 (1), p.63-79
Main Authors: Abid, Muhammad, Abbas, Nasir, Nazir, Hafiz Zafar, Lin, Zhengyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603
cites cdi_FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603
container_end_page 79
container_issue 1
container_start_page 63
container_title Revista Colombiana de estadística
container_volume 39
creator Abid, Muhammad
Abbas, Nasir
Nazir, Hafiz Zafar
Lin, Zhengyan
description Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of the proposed mean ratio estimators, population correlation coefficient, coefficient of variation and the linear combinations of auxiliary variable have also been exploited. The properties associated with the proposed estimators are evaluated through bias and mean square errors. We also provide an empirical study for illustration and verification.
doi_str_mv 10.15446/rce.v39n1.55139
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1771729036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3976322301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603</originalsourceid><addsrcrecordid>eNo1kE1PwzAMhiMEEmNw51iJc0ecNF9HNI0PqcCE2DnKWpdt2pKRdJP497QrnCz7fWTZDyG3QCcgikLexwonR248TIQAbs7IiHFtcm2UPCcjCozmoARckquUNpRKLRmMyG7mV85Xa_-VtSvMXtH57MO165DNUrveuTbElDUh_rc9OA_7w7Zn_MAvUj99Cz6fBn9E3ydum5WhGqC5i26HLcZ0TS4at01481fHZPE4-5w-5-X708v0ocwrJpXJlwyXdaG1UxoNSGxkJbmrGiWZELxGyQtd0CWvjUHggqKpUdVGQaMZF5LyMbkb9u5j-D5gau0mHGJ3VLKgFChmKJcdRQeqiiGliI3dx-7H-GOB2pNU20m1J6n2JJX_AiAGbEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771729036</pqid></control><display><type>article</type><title>Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Abid, Muhammad ; Abbas, Nasir ; Nazir, Hafiz Zafar ; Lin, Zhengyan</creator><creatorcontrib>Abid, Muhammad ; Abbas, Nasir ; Nazir, Hafiz Zafar ; Lin, Zhengyan</creatorcontrib><description>Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of the proposed mean ratio estimators, population correlation coefficient, coefficient of variation and the linear combinations of auxiliary variable have also been exploited. The properties associated with the proposed estimators are evaluated through bias and mean square errors. We also provide an empirical study for illustration and verification.</description><identifier>ISSN: 0120-1751</identifier><identifier>EISSN: 2389-8976</identifier><identifier>DOI: 10.15446/rce.v39n1.55139</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Bias ; Correlation analysis ; Estimating techniques ; Mean square errors ; Variance analysis</subject><ispartof>Revista Colombiana de estadística, 2016-01, Vol.39 (1), p.63-79</ispartof><rights>Copyright Universidad Nacional de Colombia 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603</citedby><cites>FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1771729036?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Abid, Muhammad</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Nazir, Hafiz Zafar</creatorcontrib><creatorcontrib>Lin, Zhengyan</creatorcontrib><title>Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters</title><title>Revista Colombiana de estadística</title><description>Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of the proposed mean ratio estimators, population correlation coefficient, coefficient of variation and the linear combinations of auxiliary variable have also been exploited. The properties associated with the proposed estimators are evaluated through bias and mean square errors. We also provide an empirical study for illustration and verification.</description><subject>Bias</subject><subject>Correlation analysis</subject><subject>Estimating techniques</subject><subject>Mean square errors</subject><subject>Variance analysis</subject><issn>0120-1751</issn><issn>2389-8976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1kE1PwzAMhiMEEmNw51iJc0ecNF9HNI0PqcCE2DnKWpdt2pKRdJP497QrnCz7fWTZDyG3QCcgikLexwonR248TIQAbs7IiHFtcm2UPCcjCozmoARckquUNpRKLRmMyG7mV85Xa_-VtSvMXtH57MO165DNUrveuTbElDUh_rc9OA_7w7Zn_MAvUj99Cz6fBn9E3ydum5WhGqC5i26HLcZ0TS4at01481fHZPE4-5w-5-X708v0ocwrJpXJlwyXdaG1UxoNSGxkJbmrGiWZELxGyQtd0CWvjUHggqKpUdVGQaMZF5LyMbkb9u5j-D5gau0mHGJ3VLKgFChmKJcdRQeqiiGliI3dx-7H-GOB2pNU20m1J6n2JJX_AiAGbEY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Abid, Muhammad</creator><creator>Abbas, Nasir</creator><creator>Nazir, Hafiz Zafar</creator><creator>Lin, Zhengyan</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters</title><author>Abid, Muhammad ; Abbas, Nasir ; Nazir, Hafiz Zafar ; Lin, Zhengyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bias</topic><topic>Correlation analysis</topic><topic>Estimating techniques</topic><topic>Mean square errors</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abid, Muhammad</creatorcontrib><creatorcontrib>Abbas, Nasir</creatorcontrib><creatorcontrib>Nazir, Hafiz Zafar</creatorcontrib><creatorcontrib>Lin, Zhengyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista Colombiana de estadística</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abid, Muhammad</au><au>Abbas, Nasir</au><au>Nazir, Hafiz Zafar</au><au>Lin, Zhengyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters</atitle><jtitle>Revista Colombiana de estadística</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>39</volume><issue>1</issue><spage>63</spage><epage>79</epage><pages>63-79</pages><issn>0120-1751</issn><eissn>2389-8976</eissn><abstract>Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of the proposed mean ratio estimators, population correlation coefficient, coefficient of variation and the linear combinations of auxiliary variable have also been exploited. The properties associated with the proposed estimators are evaluated through bias and mean square errors. We also provide an empirical study for illustration and verification.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/rce.v39n1.55139</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-1751
ispartof Revista Colombiana de estadística, 2016-01, Vol.39 (1), p.63-79
issn 0120-1751
2389-8976
language eng
recordid cdi_proquest_journals_1771729036
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bias
Correlation analysis
Estimating techniques
Mean square errors
Variance analysis
title Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Mean%20Ratio%20Estimators%20for%20Estimating%20Population%20Mean%20Using%20Non-Conventional%20Location%20Parameters&rft.jtitle=Revista%20Colombiana%20de%20estadi%CC%81stica&rft.au=Abid,%20Muhammad&rft.date=2016-01-01&rft.volume=39&rft.issue=1&rft.spage=63&rft.epage=79&rft.pages=63-79&rft.issn=0120-1751&rft.eissn=2389-8976&rft_id=info:doi/10.15446/rce.v39n1.55139&rft_dat=%3Cproquest_cross%3E3976322301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2679-b2ebd488a78e916ef6c63acf762553de634840b3d99e1350e9de7d971f8235603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771729036&rft_id=info:pmid/&rfr_iscdi=true