Loading…
Kernel least-mean mixed-norm algorithm
The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1288 |
container_issue | |
container_start_page | 1285 |
container_title | |
container_volume | |
creator | Miao, Q.Y Li, C.G |
description | The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions. |
doi_str_mv | 10.1049/cp.2012.1214 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_iet_c</sourceid><recordid>TN_cdi_proquest_journals_1775123773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3994129661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3</originalsourceid><addsrcrecordid>eNotkM1KxDAYRQMijIzd-QAFwY205kvS_Cxl8A8H3Mw-pOmXsUOb1rQDPr4t4-rC5XAvHELugJZAhXnyY8kosBIYiCuSGaVBCwOm4spsSDZNJ0opGKmNghvy8IkpYpd36Ka56NHFvG9_sSnikPrcdcchtfN3f0uug-smzP5zSw6vL4fde7H_evvYPe-LFriYC0CUhjlgniPnzlQSpRaMU6TBq4Y5XQspg9e0rjFwiRhqZFrVjaFLzbfk_jI7puHnjNNsT8M5xeXRglIVMK4UX6jHC9XibP0QAyaMHheG2lWB9aNdFdhVAf8DYFBOxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1775123773</pqid></control><display><type>conference_proceeding</type><title>Kernel least-mean mixed-norm algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Miao, Q.Y ; Li, C.G</creator><creatorcontrib>Miao, Q.Y ; Li, C.G</creatorcontrib><description>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</description><identifier>ISBN: 9781849195379</identifier><identifier>ISBN: 1849195374</identifier><identifier>DOI: 10.1049/cp.2012.1214</identifier><language>eng</language><publisher>Stevenage, UK: IET</publisher><subject>Filtering methods in signal processing ; Interpolation and function approximation (numerical analysis) ; Other topics in statistics ; Signal processing theory</subject><ispartof>IET Conference Proceedings, 2012, p.1285-1288</ispartof><rights>Copyright The Institution of Engineering & Technology Mar 3, 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4050,4051,27925</link.rule.ids></links><search><creatorcontrib>Miao, Q.Y</creatorcontrib><creatorcontrib>Li, C.G</creatorcontrib><title>Kernel least-mean mixed-norm algorithm</title><title>IET Conference Proceedings</title><description>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</description><subject>Filtering methods in signal processing</subject><subject>Interpolation and function approximation (numerical analysis)</subject><subject>Other topics in statistics</subject><subject>Signal processing theory</subject><isbn>9781849195379</isbn><isbn>1849195374</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KxDAYRQMijIzd-QAFwY205kvS_Cxl8A8H3Mw-pOmXsUOb1rQDPr4t4-rC5XAvHELugJZAhXnyY8kosBIYiCuSGaVBCwOm4spsSDZNJ0opGKmNghvy8IkpYpd36Ka56NHFvG9_sSnikPrcdcchtfN3f0uug-smzP5zSw6vL4fde7H_evvYPe-LFriYC0CUhjlgniPnzlQSpRaMU6TBq4Y5XQspg9e0rjFwiRhqZFrVjaFLzbfk_jI7puHnjNNsT8M5xeXRglIVMK4UX6jHC9XibP0QAyaMHheG2lWB9aNdFdhVAf8DYFBOxA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Miao, Q.Y</creator><creator>Li, C.G</creator><general>IET</general><general>The Institution of Engineering & Technology</general><scope>8ET</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2012</creationdate><title>Kernel least-mean mixed-norm algorithm</title><author>Miao, Q.Y ; Li, C.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Filtering methods in signal processing</topic><topic>Interpolation and function approximation (numerical analysis)</topic><topic>Other topics in statistics</topic><topic>Signal processing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Miao, Q.Y</creatorcontrib><creatorcontrib>Li, C.G</creatorcontrib><collection>IET Conference Publications by volume</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Q.Y</au><au>Li, C.G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel least-mean mixed-norm algorithm</atitle><btitle>IET Conference Proceedings</btitle><date>2012</date><risdate>2012</risdate><spage>1285</spage><epage>1288</epage><pages>1285-1288</pages><isbn>9781849195379</isbn><isbn>1849195374</isbn><abstract>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</abstract><cop>Stevenage, UK</cop><pub>IET</pub><doi>10.1049/cp.2012.1214</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781849195379 |
ispartof | IET Conference Proceedings, 2012, p.1285-1288 |
issn | |
language | eng |
recordid | cdi_proquest_journals_1775123773 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Filtering methods in signal processing Interpolation and function approximation (numerical analysis) Other topics in statistics Signal processing theory |
title | Kernel least-mean mixed-norm algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iet_c&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20least-mean%20mixed-norm%20algorithm&rft.btitle=IET%20Conference%20Proceedings&rft.au=Miao,%20Q.Y&rft.date=2012&rft.spage=1285&rft.epage=1288&rft.pages=1285-1288&rft.isbn=9781849195379&rft.isbn_list=1849195374&rft_id=info:doi/10.1049/cp.2012.1214&rft_dat=%3Cproquest_iet_c%3E3994129661%3C/proquest_iet_c%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1775123773&rft_id=info:pmid/&rfr_iscdi=true |