Loading…

Kernel least-mean mixed-norm algorithm

The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine...

Full description

Saved in:
Bibliographic Details
Main Authors: Miao, Q.Y, Li, C.G
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1288
container_issue
container_start_page 1285
container_title
container_volume
creator Miao, Q.Y
Li, C.G
description The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.
doi_str_mv 10.1049/cp.2012.1214
format conference_proceeding
fullrecord <record><control><sourceid>proquest_iet_c</sourceid><recordid>TN_cdi_proquest_journals_1775123773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3994129661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3</originalsourceid><addsrcrecordid>eNotkM1KxDAYRQMijIzd-QAFwY205kvS_Cxl8A8H3Mw-pOmXsUOb1rQDPr4t4-rC5XAvHELugJZAhXnyY8kosBIYiCuSGaVBCwOm4spsSDZNJ0opGKmNghvy8IkpYpd36Ka56NHFvG9_sSnikPrcdcchtfN3f0uug-smzP5zSw6vL4fde7H_evvYPe-LFriYC0CUhjlgniPnzlQSpRaMU6TBq4Y5XQspg9e0rjFwiRhqZFrVjaFLzbfk_jI7puHnjNNsT8M5xeXRglIVMK4UX6jHC9XibP0QAyaMHheG2lWB9aNdFdhVAf8DYFBOxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1775123773</pqid></control><display><type>conference_proceeding</type><title>Kernel least-mean mixed-norm algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Miao, Q.Y ; Li, C.G</creator><creatorcontrib>Miao, Q.Y ; Li, C.G</creatorcontrib><description>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</description><identifier>ISBN: 9781849195379</identifier><identifier>ISBN: 1849195374</identifier><identifier>DOI: 10.1049/cp.2012.1214</identifier><language>eng</language><publisher>Stevenage, UK: IET</publisher><subject>Filtering methods in signal processing ; Interpolation and function approximation (numerical analysis) ; Other topics in statistics ; Signal processing theory</subject><ispartof>IET Conference Proceedings, 2012, p.1285-1288</ispartof><rights>Copyright The Institution of Engineering &amp; Technology Mar 3, 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4050,4051,27925</link.rule.ids></links><search><creatorcontrib>Miao, Q.Y</creatorcontrib><creatorcontrib>Li, C.G</creatorcontrib><title>Kernel least-mean mixed-norm algorithm</title><title>IET Conference Proceedings</title><description>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</description><subject>Filtering methods in signal processing</subject><subject>Interpolation and function approximation (numerical analysis)</subject><subject>Other topics in statistics</subject><subject>Signal processing theory</subject><isbn>9781849195379</isbn><isbn>1849195374</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KxDAYRQMijIzd-QAFwY205kvS_Cxl8A8H3Mw-pOmXsUOb1rQDPr4t4-rC5XAvHELugJZAhXnyY8kosBIYiCuSGaVBCwOm4spsSDZNJ0opGKmNghvy8IkpYpd36Ka56NHFvG9_sSnikPrcdcchtfN3f0uug-smzP5zSw6vL4fde7H_evvYPe-LFriYC0CUhjlgniPnzlQSpRaMU6TBq4Y5XQspg9e0rjFwiRhqZFrVjaFLzbfk_jI7puHnjNNsT8M5xeXRglIVMK4UX6jHC9XibP0QAyaMHheG2lWB9aNdFdhVAf8DYFBOxA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Miao, Q.Y</creator><creator>Li, C.G</creator><general>IET</general><general>The Institution of Engineering &amp; Technology</general><scope>8ET</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2012</creationdate><title>Kernel least-mean mixed-norm algorithm</title><author>Miao, Q.Y ; Li, C.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Filtering methods in signal processing</topic><topic>Interpolation and function approximation (numerical analysis)</topic><topic>Other topics in statistics</topic><topic>Signal processing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Miao, Q.Y</creatorcontrib><creatorcontrib>Li, C.G</creatorcontrib><collection>IET Conference Publications by volume</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Q.Y</au><au>Li, C.G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel least-mean mixed-norm algorithm</atitle><btitle>IET Conference Proceedings</btitle><date>2012</date><risdate>2012</risdate><spage>1285</spage><epage>1288</epage><pages>1285-1288</pages><isbn>9781849195379</isbn><isbn>1849195374</isbn><abstract>The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. The least-mean mixed-norm (LMMN) algorithm possesses good performance when the system measurement noise shows distribution with a linear combination of long tails and short tails. In this paper, we combine the famed kernel trick and the LMMN algorithm to present the kernel LMMN (KLMMN) algorithm, which is an adaptive filtering algorithm in reproducing kernel Hilbert space (RKHS). The optimal norm-mixing parameter is derived. To demonstrate the effectiveness and superiorities of the proposed algorithm, we apply the algorithm to nonlinear system identification when the environment noise composed of a linear combination of Gaussian and Bernoulli distributions.</abstract><cop>Stevenage, UK</cop><pub>IET</pub><doi>10.1049/cp.2012.1214</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781849195379
ispartof IET Conference Proceedings, 2012, p.1285-1288
issn
language eng
recordid cdi_proquest_journals_1775123773
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Filtering methods in signal processing
Interpolation and function approximation (numerical analysis)
Other topics in statistics
Signal processing theory
title Kernel least-mean mixed-norm algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iet_c&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20least-mean%20mixed-norm%20algorithm&rft.btitle=IET%20Conference%20Proceedings&rft.au=Miao,%20Q.Y&rft.date=2012&rft.spage=1285&rft.epage=1288&rft.pages=1285-1288&rft.isbn=9781849195379&rft.isbn_list=1849195374&rft_id=info:doi/10.1049/cp.2012.1214&rft_dat=%3Cproquest_iet_c%3E3994129661%3C/proquest_iet_c%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-1ee692a12c3e33a956e684230e0fc7d2a8b466fc80bbef36eefbe287bd906fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1775123773&rft_id=info:pmid/&rfr_iscdi=true