Loading…

Attraction Range and Inter-Trap Distance of Pheromonebaited Traps for Monitoring Scyphophorus acupunctatus (Coleoptera: Dryophthoridae) on Blue Agave

Scyphophorus acupunctatus Gyllenhal (Coleoptera: Dryophthoridae) is one of the most important insect pests of wild and cultivated agaves in Mexico. For managing this weevil, it is important to have a method for detecting and sampling its population density. The weevil's life cycle takes place i...

Full description

Saved in:
Bibliographic Details
Published in:The Florida entomologist 2016-03, Vol.99 (1), p.94-99
Main Authors: Figueroa-Castro, Pedro, Rodríguez-Rebollar, Hilda, González-Hernández, Héctor, Solís-Aguilar, Juan Fernando, Real-Laborde, José Ignacio del, Carrillo-Sánchez, José Luis, Rojas, Julio C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scyphophorus acupunctatus Gyllenhal (Coleoptera: Dryophthoridae) is one of the most important insect pests of wild and cultivated agaves in Mexico. For managing this weevil, it is important to have a method for detecting and sampling its population density. The weevil's life cycle takes place inside the agave plant, which makes sampling of the weevil difficult. The use of traps baited with synthetic pheromone plus agave tissue is a useful tool for sampling the population density of this pest. Using the capture-mark-release-recapture method, we investigated the attraction range of traps baited with synthetic pheromone plus agave tissue to capture S. acupunctatus. We also evaluated several inter-trap distances to determine the best density of traps for monitoring this insect. Our results showed that these traps attracted S. acupunctatus up to a range of 120 m. In addition, we found that the cardinal point at which weevils were released affected their recapture. The results also showed that, in general, experiments with the longest inter-trap distances captured the most weevils. Thus, traps placed at 100 m in the 1st experiment, 200 m in the 2nd experiment, and 250 m in the 3rd experiment captured more weevils than traps placed at shorter distances. Based on our results of attraction range and inter-trap distances, we suggest that these pheromone-baited traps could be used for monitoring S. acupunctatus at densities of 1 trap per 6 ha of blue agave crop.
ISSN:0015-4040
1938-5102
DOI:10.1653/024.099.0117