Loading…

Implementation of a Nonlinear Planar Magnetics Model

A nonlinear lumped element model for planar magnetics is presented. This technique develops an equivalent circuit model for multilayer planar magnetic components using 1-D analysis of Maxwell's equations. Conducting layers are represented as impedance networks, while the insulating regions are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2016-09, Vol.31 (9), p.6534-6542
Main Authors: Tria, Lew Andrew Ravelas, Daming Zhang, Fletcher, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03
cites cdi_FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03
container_end_page 6542
container_issue 9
container_start_page 6534
container_title IEEE transactions on power electronics
container_volume 31
creator Tria, Lew Andrew Ravelas
Daming Zhang
Fletcher, John E.
description A nonlinear lumped element model for planar magnetics is presented. This technique develops an equivalent circuit model for multilayer planar magnetic components using 1-D analysis of Maxwell's equations. Conducting layers are represented as impedance networks, while the insulating regions are modeled as air-cored inductors. The equivalent circuit model is extended by representing the nonlinear magnetic core material as a nonlinear impedance whose magnetization characteristic is based on the Jiles-Atherton hysteresis model as well as modeling skin and proximity effects in the conductors and current distribution across windings, the improved model also integrates hysteresis loss of the magnetic core and saturation effects. The technique can be implemented in circuit simulation software. A prototype planar transformer, using printed circuit boards to mount windings, was characterized to validate the performance of the model. It is demonstrated that the developed nonlinear model more accurately represents the characteristics of the experimental transformer compared to the existing linear lumped element model. This includes the effect of core saturation on the input current and output-voltage waveforms. The technique is generalized and can be applied to many topologies and geometries.
doi_str_mv 10.1109/TPEL.2015.2503744
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1780167476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7337441</ieee_id><sourcerecordid>1816045987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03</originalsourceid><addsrcrecordid>eNpdkLtOw0AQRVcIJELgAxCNJRoahxnvy1uiKECkBFKEerW2x8iR4w1ep-DvWSuIguoWc-7o6jB2izBDBPO43SxWswxQzjIJXAtxxiZoBKaAoM_ZBPJcprkx_JJdhbADQCEBJ0ws94eW9tQNbmh8l_g6ccmb79qmI9cnm9Z1Mdbus6OhKUOy9hW11-yidm2gm9-cso_nxXb-mq7eX5bzp1Va8kwNqaa4w2RcIJdGKCqNoUqDFLLIKumgkERaFso5xyNblJWutaorKIhyVQGfsofT30Pvv44UBrtvQkltHEX-GCzmqEBIk-uI3v9Dd_7Yd3GdRZ0DKi20ihSeqLL3IfRU20Pf7F3_bRHs6NGOHu3o0f56jJ27U6choj9e8_GI_AeG3mz1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780167476</pqid></control><display><type>article</type><title>Implementation of a Nonlinear Planar Magnetics Model</title><source>IEEE Xplore (Online service)</source><creator>Tria, Lew Andrew Ravelas ; Daming Zhang ; Fletcher, John E.</creator><creatorcontrib>Tria, Lew Andrew Ravelas ; Daming Zhang ; Fletcher, John E.</creatorcontrib><description>A nonlinear lumped element model for planar magnetics is presented. This technique develops an equivalent circuit model for multilayer planar magnetic components using 1-D analysis of Maxwell's equations. Conducting layers are represented as impedance networks, while the insulating regions are modeled as air-cored inductors. The equivalent circuit model is extended by representing the nonlinear magnetic core material as a nonlinear impedance whose magnetization characteristic is based on the Jiles-Atherton hysteresis model as well as modeling skin and proximity effects in the conductors and current distribution across windings, the improved model also integrates hysteresis loss of the magnetic core and saturation effects. The technique can be implemented in circuit simulation software. A prototype planar transformer, using printed circuit boards to mount windings, was characterized to validate the performance of the model. It is demonstrated that the developed nonlinear model more accurately represents the characteristics of the experimental transformer compared to the existing linear lumped element model. This includes the effect of core saturation on the input current and output-voltage waveforms. The technique is generalized and can be applied to many topologies and geometries.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2015.2503744</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boards ; Coils (windings) ; Computational modeling ; Electric currents ; Equivalent circuits ; Impedance ; Integrated circuit modeling ; Jiles-Atherton model ; Magnetic cores ; Magnetic hysteresis ; Magnetism ; Mathematical model ; Non-linear magnetics equivalent circuit ; Nonlinearity ; PCB transformer ; Planar magnetics ; Printed circuit boards ; Prototypes ; Saturation ; Simulation ; Transformers ; Windings</subject><ispartof>IEEE transactions on power electronics, 2016-09, Vol.31 (9), p.6534-6542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03</citedby><cites>FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7337441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tria, Lew Andrew Ravelas</creatorcontrib><creatorcontrib>Daming Zhang</creatorcontrib><creatorcontrib>Fletcher, John E.</creatorcontrib><title>Implementation of a Nonlinear Planar Magnetics Model</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A nonlinear lumped element model for planar magnetics is presented. This technique develops an equivalent circuit model for multilayer planar magnetic components using 1-D analysis of Maxwell's equations. Conducting layers are represented as impedance networks, while the insulating regions are modeled as air-cored inductors. The equivalent circuit model is extended by representing the nonlinear magnetic core material as a nonlinear impedance whose magnetization characteristic is based on the Jiles-Atherton hysteresis model as well as modeling skin and proximity effects in the conductors and current distribution across windings, the improved model also integrates hysteresis loss of the magnetic core and saturation effects. The technique can be implemented in circuit simulation software. A prototype planar transformer, using printed circuit boards to mount windings, was characterized to validate the performance of the model. It is demonstrated that the developed nonlinear model more accurately represents the characteristics of the experimental transformer compared to the existing linear lumped element model. This includes the effect of core saturation on the input current and output-voltage waveforms. The technique is generalized and can be applied to many topologies and geometries.</description><subject>Boards</subject><subject>Coils (windings)</subject><subject>Computational modeling</subject><subject>Electric currents</subject><subject>Equivalent circuits</subject><subject>Impedance</subject><subject>Integrated circuit modeling</subject><subject>Jiles-Atherton model</subject><subject>Magnetic cores</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Mathematical model</subject><subject>Non-linear magnetics equivalent circuit</subject><subject>Nonlinearity</subject><subject>PCB transformer</subject><subject>Planar magnetics</subject><subject>Printed circuit boards</subject><subject>Prototypes</subject><subject>Saturation</subject><subject>Simulation</subject><subject>Transformers</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOw0AQRVcIJELgAxCNJRoahxnvy1uiKECkBFKEerW2x8iR4w1ep-DvWSuIguoWc-7o6jB2izBDBPO43SxWswxQzjIJXAtxxiZoBKaAoM_ZBPJcprkx_JJdhbADQCEBJ0ws94eW9tQNbmh8l_g6ccmb79qmI9cnm9Z1Mdbus6OhKUOy9hW11-yidm2gm9-cso_nxXb-mq7eX5bzp1Va8kwNqaa4w2RcIJdGKCqNoUqDFLLIKumgkERaFso5xyNblJWutaorKIhyVQGfsofT30Pvv44UBrtvQkltHEX-GCzmqEBIk-uI3v9Dd_7Yd3GdRZ0DKi20ihSeqLL3IfRU20Pf7F3_bRHs6NGOHu3o0f56jJ27U6choj9e8_GI_AeG3mz1</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Tria, Lew Andrew Ravelas</creator><creator>Daming Zhang</creator><creator>Fletcher, John E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201609</creationdate><title>Implementation of a Nonlinear Planar Magnetics Model</title><author>Tria, Lew Andrew Ravelas ; Daming Zhang ; Fletcher, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boards</topic><topic>Coils (windings)</topic><topic>Computational modeling</topic><topic>Electric currents</topic><topic>Equivalent circuits</topic><topic>Impedance</topic><topic>Integrated circuit modeling</topic><topic>Jiles-Atherton model</topic><topic>Magnetic cores</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Mathematical model</topic><topic>Non-linear magnetics equivalent circuit</topic><topic>Nonlinearity</topic><topic>PCB transformer</topic><topic>Planar magnetics</topic><topic>Printed circuit boards</topic><topic>Prototypes</topic><topic>Saturation</topic><topic>Simulation</topic><topic>Transformers</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tria, Lew Andrew Ravelas</creatorcontrib><creatorcontrib>Daming Zhang</creatorcontrib><creatorcontrib>Fletcher, John E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tria, Lew Andrew Ravelas</au><au>Daming Zhang</au><au>Fletcher, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a Nonlinear Planar Magnetics Model</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2016-09</date><risdate>2016</risdate><volume>31</volume><issue>9</issue><spage>6534</spage><epage>6542</epage><pages>6534-6542</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A nonlinear lumped element model for planar magnetics is presented. This technique develops an equivalent circuit model for multilayer planar magnetic components using 1-D analysis of Maxwell's equations. Conducting layers are represented as impedance networks, while the insulating regions are modeled as air-cored inductors. The equivalent circuit model is extended by representing the nonlinear magnetic core material as a nonlinear impedance whose magnetization characteristic is based on the Jiles-Atherton hysteresis model as well as modeling skin and proximity effects in the conductors and current distribution across windings, the improved model also integrates hysteresis loss of the magnetic core and saturation effects. The technique can be implemented in circuit simulation software. A prototype planar transformer, using printed circuit boards to mount windings, was characterized to validate the performance of the model. It is demonstrated that the developed nonlinear model more accurately represents the characteristics of the experimental transformer compared to the existing linear lumped element model. This includes the effect of core saturation on the input current and output-voltage waveforms. The technique is generalized and can be applied to many topologies and geometries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2015.2503744</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2016-09, Vol.31 (9), p.6534-6542
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1780167476
source IEEE Xplore (Online service)
subjects Boards
Coils (windings)
Computational modeling
Electric currents
Equivalent circuits
Impedance
Integrated circuit modeling
Jiles-Atherton model
Magnetic cores
Magnetic hysteresis
Magnetism
Mathematical model
Non-linear magnetics equivalent circuit
Nonlinearity
PCB transformer
Planar magnetics
Printed circuit boards
Prototypes
Saturation
Simulation
Transformers
Windings
title Implementation of a Nonlinear Planar Magnetics Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20Nonlinear%20Planar%20Magnetics%20Model&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Tria,%20Lew%20Andrew%20Ravelas&rft.date=2016-09&rft.volume=31&rft.issue=9&rft.spage=6534&rft.epage=6542&rft.pages=6534-6542&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2015.2503744&rft_dat=%3Cproquest_cross%3E1816045987%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-7e7449234135946ec99ed70545b2d5a0b5ee75b6aaa37e7bcd7f76fd0bee86d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1780167476&rft_id=info:pmid/&rft_ieee_id=7337441&rfr_iscdi=true