Loading…
Yb-Doped Pedestal Silica Fiber Through Vapor Phase Doping for Pulsed Laser Applications
This letter describes successful fabrication and detail characterization of ytterbium (Yb)-doped pedestal aluminosilicate fibers through vapor phase doping technique using modified chemical vapor deposition system (MCVD). Fabricated preforms have uniform step-index profiles devoid of any profile rip...
Saved in:
Published in: | IEEE photonics technology letters 2016-05, Vol.28 (9), p.1022-1025 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter describes successful fabrication and detail characterization of ytterbium (Yb)-doped pedestal aluminosilicate fibers through vapor phase doping technique using modified chemical vapor deposition system (MCVD). Fabricated preforms have uniform step-index profiles devoid of any profile ripples, central dip, and/or core-clad interface defects, which are very common to the preforms made by a solution doping method. Fibers with a pedestal design exhibit good optical properties, low photodarkening-induced losses, high SNR values, and higher efficiencies making them suitable for high-power pulsed laser applications as compared with normal Yb-doped fibers. One of the pedestal fibers has demonstrated the output energy of 186 μJ with the 1.86-W average power. The pulse has a width of 100 ns at a 10-kHz repetition rate, which provides a peak power of 1.86 kW. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2016.2524040 |