Loading…
Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions
Among a number of ensemble learning techniques, boosting and bagging are the most popular sampling-based ensemble approaches for classification problems. Boosting is considered stronger than bagging on noise-free data set with complex class structures, whereas bagging is more robust than boosting in...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2016-05, Vol.27 (5), p.952-965 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3 |
container_end_page | 965 |
container_issue | 5 |
container_start_page | 952 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 27 |
creator | Yang, Yun Jiang, Jianmin |
description | Among a number of ensemble learning techniques, boosting and bagging are the most popular sampling-based ensemble approaches for classification problems. Boosting is considered stronger than bagging on noise-free data set with complex class structures, whereas bagging is more robust than boosting in cases where noise data are present. In this paper, we extend both ensemble approaches to clustering tasks, and propose a novel hybrid sampling-based clustering ensemble by combining the strengths of boosting and bagging. In our approach, the input partitions are iteratively generated via a hybrid process inspired by both boosting and bagging. Then, a novel consensus function is proposed to encode the local and global cluster structure of input partitions into a single representation, and applies a single clustering algorithm to such representation to obtain the consolidated consensus partition. Our approach has been evaluated on 2-D-synthetic data, collection of benchmarks, and real-world facial recognition data sets, which show that the proposed technique outperforms the existing benchmarks for a variety of clustering tasks. |
doi_str_mv | 10.1109/TNNLS.2015.2430821 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1787151143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7112527</ieee_id><sourcerecordid>1783918475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0Eoqj0D4CEIrGwpPj87RGi0iKVMrQItshJHEiVjxInQ_89Li0d8OJXd8-dTg9CV4DHAFjfrxaL-XJMMPAxYRQrAifogoAgIaFKnR6z_BigkXNr7J_AXDB9jgZEAgYs9QV6mW2TtsiCpak2ZVF_ho_G2SyIyt51tvWFYFI7WyWlDd6L7iuYlk1iysDUWTBvUp-ipnZd0fVd4cMlOstN6ezo8A_R29NkFc3C-ev0OXqYhynl0IVGcK4NEQwbptM0J0ppBSLBkmpJhGAy58JSniXEYq4MJzllCmsJghKdWTpEd_u9m7b57q3r4qpwqS1LU9umdzFIRTUoJrlHb_-h66Zva3_djpLAARj1FNlTads419o83rRFZdptDDje-Y5_fcc73_HBtx-6Oazuk8pmx5E_ux643gOFtfbYlgCEE0l_AIlcgUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787151143</pqid></control><display><type>article</type><title>Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions</title><source>IEEE Xplore (Online service)</source><creator>Yang, Yun ; Jiang, Jianmin</creator><creatorcontrib>Yang, Yun ; Jiang, Jianmin</creatorcontrib><description>Among a number of ensemble learning techniques, boosting and bagging are the most popular sampling-based ensemble approaches for classification problems. Boosting is considered stronger than bagging on noise-free data set with complex class structures, whereas bagging is more robust than boosting in cases where noise data are present. In this paper, we extend both ensemble approaches to clustering tasks, and propose a novel hybrid sampling-based clustering ensemble by combining the strengths of boosting and bagging. In our approach, the input partitions are iteratively generated via a hybrid process inspired by both boosting and bagging. Then, a novel consensus function is proposed to encode the local and global cluster structure of input partitions into a single representation, and applies a single clustering algorithm to such representation to obtain the consolidated consensus partition. Our approach has been evaluated on 2-D-synthetic data, collection of benchmarks, and real-world facial recognition data sets, which show that the proposed technique outperforms the existing benchmarks for a variety of clustering tasks.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2430821</identifier><identifier>PMID: 27101079</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Bagging ; Boosting ; Clustering ; Clustering algorithms ; Clustering ensemble ; consensus clustering ; Constitution ; data clustering ; Linear programming ; Partitioning algorithms ; sampling ; unsupervised learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-05, Vol.27 (5), p.952-965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3</citedby><cites>FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7112527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27101079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Jiang, Jianmin</creatorcontrib><title>Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Among a number of ensemble learning techniques, boosting and bagging are the most popular sampling-based ensemble approaches for classification problems. Boosting is considered stronger than bagging on noise-free data set with complex class structures, whereas bagging is more robust than boosting in cases where noise data are present. In this paper, we extend both ensemble approaches to clustering tasks, and propose a novel hybrid sampling-based clustering ensemble by combining the strengths of boosting and bagging. In our approach, the input partitions are iteratively generated via a hybrid process inspired by both boosting and bagging. Then, a novel consensus function is proposed to encode the local and global cluster structure of input partitions into a single representation, and applies a single clustering algorithm to such representation to obtain the consolidated consensus partition. Our approach has been evaluated on 2-D-synthetic data, collection of benchmarks, and real-world facial recognition data sets, which show that the proposed technique outperforms the existing benchmarks for a variety of clustering tasks.</description><subject>Algorithm design and analysis</subject><subject>Bagging</subject><subject>Boosting</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering ensemble</subject><subject>consensus clustering</subject><subject>Constitution</subject><subject>data clustering</subject><subject>Linear programming</subject><subject>Partitioning algorithms</subject><subject>sampling</subject><subject>unsupervised learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0Eoqj0D4CEIrGwpPj87RGi0iKVMrQItshJHEiVjxInQ_89Li0d8OJXd8-dTg9CV4DHAFjfrxaL-XJMMPAxYRQrAifogoAgIaFKnR6z_BigkXNr7J_AXDB9jgZEAgYs9QV6mW2TtsiCpak2ZVF_ho_G2SyIyt51tvWFYFI7WyWlDd6L7iuYlk1iysDUWTBvUp-ipnZd0fVd4cMlOstN6ezo8A_R29NkFc3C-ev0OXqYhynl0IVGcK4NEQwbptM0J0ppBSLBkmpJhGAy58JSniXEYq4MJzllCmsJghKdWTpEd_u9m7b57q3r4qpwqS1LU9umdzFIRTUoJrlHb_-h66Zva3_djpLAARj1FNlTads419o83rRFZdptDDje-Y5_fcc73_HBtx-6Oazuk8pmx5E_ux643gOFtfbYlgCEE0l_AIlcgUY</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Yang, Yun</creator><creator>Jiang, Jianmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions</title><author>Yang, Yun ; Jiang, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Bagging</topic><topic>Boosting</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering ensemble</topic><topic>consensus clustering</topic><topic>Constitution</topic><topic>data clustering</topic><topic>Linear programming</topic><topic>Partitioning algorithms</topic><topic>sampling</topic><topic>unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Jiang, Jianmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yun</au><au>Jiang, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-05</date><risdate>2016</risdate><volume>27</volume><issue>5</issue><spage>952</spage><epage>965</epage><pages>952-965</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Among a number of ensemble learning techniques, boosting and bagging are the most popular sampling-based ensemble approaches for classification problems. Boosting is considered stronger than bagging on noise-free data set with complex class structures, whereas bagging is more robust than boosting in cases where noise data are present. In this paper, we extend both ensemble approaches to clustering tasks, and propose a novel hybrid sampling-based clustering ensemble by combining the strengths of boosting and bagging. In our approach, the input partitions are iteratively generated via a hybrid process inspired by both boosting and bagging. Then, a novel consensus function is proposed to encode the local and global cluster structure of input partitions into a single representation, and applies a single clustering algorithm to such representation to obtain the consolidated consensus partition. Our approach has been evaluated on 2-D-synthetic data, collection of benchmarks, and real-world facial recognition data sets, which show that the proposed technique outperforms the existing benchmarks for a variety of clustering tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27101079</pmid><doi>10.1109/TNNLS.2015.2430821</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2016-05, Vol.27 (5), p.952-965 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_1787151143 |
source | IEEE Xplore (Online service) |
subjects | Algorithm design and analysis Bagging Boosting Clustering Clustering algorithms Clustering ensemble consensus clustering Constitution data clustering Linear programming Partitioning algorithms sampling unsupervised learning |
title | Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Sampling-Based%20Clustering%20Ensemble%20With%20Global%20and%20Local%20Constitutions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Yang,%20Yun&rft.date=2016-05&rft.volume=27&rft.issue=5&rft.spage=952&rft.epage=965&rft.pages=952-965&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2430821&rft_dat=%3Cproquest_cross%3E1783918475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-a6559a2640a49ccf2889816b0739726647f56e35db2e058a52f34809716329de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787151143&rft_id=info:pmid/27101079&rft_ieee_id=7112527&rfr_iscdi=true |