Loading…
Numerical Analysis of the Power Balance of an Electrical Machine With Rotor Eccentricity
The power balance in the numerical simulation of a cage induction machine with eccentric rotor has been studied. The asymmetrical air-gap flux density distribution caused by the non-uniform air gap due to eccentricity produced forces that play an important role in the rotor dynamic stability. These...
Saved in:
Published in: | IEEE transactions on magnetics 2016-03, Vol.52 (3), p.1-4 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The power balance in the numerical simulation of a cage induction machine with eccentric rotor has been studied. The asymmetrical air-gap flux density distribution caused by the non-uniform air gap due to eccentricity produced forces that play an important role in the rotor dynamic stability. These forces act both in the radial and the tangential directions. The tangential force together with the whirling motion produces additional power in the shaft. If the power balance of the simulation satisfies, the power due to the whirling can be calculated from the power balance. This could also give a new approach to compute the forces due to eccentricity or verify the existing force computation methods. The error in the power balance of an eccentric machine has been calculated and the sources of the errors have been illustrated and discussed. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2015.2477847 |