Loading…
The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for...
Saved in:
Published in: | Educational psychology review 2016-06, Vol.28 (2), p.295-314 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203 |
container_end_page | 314 |
container_issue | 2 |
container_start_page | 295 |
container_title | Educational psychology review |
container_volume | 28 |
creator | McNeish, Daniel M. Stapleton, Laura M. |
description | Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the problems associated with a small number of clusters, (2) review previous studies on multilevel models with a small number of clusters, (3) to provide an illustrative simulation to demonstrate how a simple model becomes adversely affected by small numbers of clusters, (4) to provide researchers with remedies if they encounter clustered data with a small number of clusters, and (5) to outline methodological topics that have yet to be addressed in the literature. |
doi_str_mv | 10.1007/s10648-014-9287-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1788492198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713722217</galeid><ericid>EJ1100669</ericid><jstor_id>24761234</jstor_id><sourcerecordid>A713722217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203</originalsourceid><addsrcrecordid>eNqFUFlLKzEYHUTB9Qf4IAR8jmabJONbkbpREWxF30Ka-eKdMp3UZOr2643MRXyTQPKRs-TkFMUhJSeUEHWaKJFCY0IFrphW-H2j2KGl4phz-bSZZyIIVkw-bRe7KS0IIZUSfKd4nP0DNPYeXI-CR9OlbVs0tctVC2jafAIKHZq9BTyBV2jRbajzPk59s7Q9pDM0Qvfw2sAbsl2Nrtt2nfpo-yZ0-8WWt22Cg__nXvFwMZ6dX-HJ3eX1-WiCnZBlj62cl94KDl5b5qSa147mMNJbPXdQl94LpZmcV1zJ0mnpfV2xChwrQXlghO8Vx4PvKoaXNaTeLMI6dvlJQ5XWomK00pl1MrCebQum6XzIMV1eNSwbFzrwTb4fKcoVY4yqLKCDwMWQUgRvVjH_OX4YSsx34WYo3OTCzXfh5j1rjgYNxMb98Mc3NPOlrDLOBjxlrHuG-Cvq36aL1If448qEkpRxwb8ALmeWvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788492198</pqid></control><display><type>article</type><title>The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Social Science Premium Collection</source><source>Springer Nature</source><source>ERIC</source><source>Education Collection</source><creator>McNeish, Daniel M. ; Stapleton, Laura M.</creator><creatorcontrib>McNeish, Daniel M. ; Stapleton, Laura M.</creatorcontrib><description>Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the problems associated with a small number of clusters, (2) review previous studies on multilevel models with a small number of clusters, (3) to provide an illustrative simulation to demonstrate how a simple model becomes adversely affected by small numbers of clusters, (4) to provide researchers with remedies if they encounter clustered data with a small number of clusters, and (5) to outline methodological topics that have yet to be addressed in the literature.</description><identifier>ISSN: 1040-726X</identifier><identifier>EISSN: 1573-336X</identifier><identifier>DOI: 10.1007/s10648-014-9287-x</identifier><identifier>CODEN: EPSREO</identifier><language>eng</language><publisher>New York: Springer</publisher><subject>Child and School Psychology ; Cluster Grouping ; Data analysis ; Education ; Educational aspects ; Educational Psychology ; Effect Size ; Estimation bias ; Estimation methods ; Hierarchical Linear Modeling ; Learning and Instruction ; Least Squares Statistics ; Literature Reviews ; Maximum likelihood estimation ; Maximum Likelihood Statistics ; Multilevel models ; Multivariate Analysis ; Population estimates ; Research methods ; Research Problems ; Review Article ; REVIEW ARTICLES ; Sample Size ; Sampling distributions ; Simulation ; Simulations ; Standard error ; Statistical Analysis ; Statistical variance ; Studies</subject><ispartof>Educational psychology review, 2016-06, Vol.28 (2), p.295-314</ispartof><rights>Springer Science+Business Media 2016</rights><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203</citedby><cites>FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1788492198/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1788492198?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21358,21374,27903,27904,33590,33856,43712,43859,58216,58449,73967,74143</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1100669$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>McNeish, Daniel M.</creatorcontrib><creatorcontrib>Stapleton, Laura M.</creatorcontrib><title>The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration</title><title>Educational psychology review</title><addtitle>Educ Psychol Rev</addtitle><description>Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the problems associated with a small number of clusters, (2) review previous studies on multilevel models with a small number of clusters, (3) to provide an illustrative simulation to demonstrate how a simple model becomes adversely affected by small numbers of clusters, (4) to provide researchers with remedies if they encounter clustered data with a small number of clusters, and (5) to outline methodological topics that have yet to be addressed in the literature.</description><subject>Child and School Psychology</subject><subject>Cluster Grouping</subject><subject>Data analysis</subject><subject>Education</subject><subject>Educational aspects</subject><subject>Educational Psychology</subject><subject>Effect Size</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Hierarchical Linear Modeling</subject><subject>Learning and Instruction</subject><subject>Least Squares Statistics</subject><subject>Literature Reviews</subject><subject>Maximum likelihood estimation</subject><subject>Maximum Likelihood Statistics</subject><subject>Multilevel models</subject><subject>Multivariate Analysis</subject><subject>Population estimates</subject><subject>Research methods</subject><subject>Research Problems</subject><subject>Review Article</subject><subject>REVIEW ARTICLES</subject><subject>Sample Size</subject><subject>Sampling distributions</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Standard error</subject><subject>Statistical Analysis</subject><subject>Statistical variance</subject><subject>Studies</subject><issn>1040-726X</issn><issn>1573-336X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqFUFlLKzEYHUTB9Qf4IAR8jmabJONbkbpREWxF30Ka-eKdMp3UZOr2643MRXyTQPKRs-TkFMUhJSeUEHWaKJFCY0IFrphW-H2j2KGl4phz-bSZZyIIVkw-bRe7KS0IIZUSfKd4nP0DNPYeXI-CR9OlbVs0tctVC2jafAIKHZq9BTyBV2jRbajzPk59s7Q9pDM0Qvfw2sAbsl2Nrtt2nfpo-yZ0-8WWt22Cg__nXvFwMZ6dX-HJ3eX1-WiCnZBlj62cl94KDl5b5qSa147mMNJbPXdQl94LpZmcV1zJ0mnpfV2xChwrQXlghO8Vx4PvKoaXNaTeLMI6dvlJQ5XWomK00pl1MrCebQum6XzIMV1eNSwbFzrwTb4fKcoVY4yqLKCDwMWQUgRvVjH_OX4YSsx34WYo3OTCzXfh5j1rjgYNxMb98Mc3NPOlrDLOBjxlrHuG-Cvq36aL1If448qEkpRxwb8ALmeWvQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>McNeish, Daniel M.</creator><creator>Stapleton, Laura M.</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88G</scope><scope>8A4</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>M0P</scope><scope>M2M</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration</title><author>McNeish, Daniel M. ; Stapleton, Laura M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Child and School Psychology</topic><topic>Cluster Grouping</topic><topic>Data analysis</topic><topic>Education</topic><topic>Educational aspects</topic><topic>Educational Psychology</topic><topic>Effect Size</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Hierarchical Linear Modeling</topic><topic>Learning and Instruction</topic><topic>Least Squares Statistics</topic><topic>Literature Reviews</topic><topic>Maximum likelihood estimation</topic><topic>Maximum Likelihood Statistics</topic><topic>Multilevel models</topic><topic>Multivariate Analysis</topic><topic>Population estimates</topic><topic>Research methods</topic><topic>Research Problems</topic><topic>Review Article</topic><topic>REVIEW ARTICLES</topic><topic>Sample Size</topic><topic>Sampling distributions</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Standard error</topic><topic>Statistical Analysis</topic><topic>Statistical variance</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNeish, Daniel M.</creatorcontrib><creatorcontrib>Stapleton, Laura M.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Education Periodicals</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Education Journals</collection><collection>Psychology Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Educational psychology review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNeish, Daniel M.</au><au>Stapleton, Laura M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1100669</ericid><atitle>The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration</atitle><jtitle>Educational psychology review</jtitle><stitle>Educ Psychol Rev</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>28</volume><issue>2</issue><spage>295</spage><epage>314</epage><pages>295-314</pages><issn>1040-726X</issn><eissn>1573-336X</eissn><coden>EPSREO</coden><abstract>Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the problems associated with a small number of clusters, (2) review previous studies on multilevel models with a small number of clusters, (3) to provide an illustrative simulation to demonstrate how a simple model becomes adversely affected by small numbers of clusters, (4) to provide researchers with remedies if they encounter clustered data with a small number of clusters, and (5) to outline methodological topics that have yet to be addressed in the literature.</abstract><cop>New York</cop><pub>Springer</pub><doi>10.1007/s10648-014-9287-x</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-726X |
ispartof | Educational psychology review, 2016-06, Vol.28 (2), p.295-314 |
issn | 1040-726X 1573-336X |
language | eng |
recordid | cdi_proquest_journals_1788492198 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Social Science Premium Collection; Springer Nature; ERIC; Education Collection |
subjects | Child and School Psychology Cluster Grouping Data analysis Education Educational aspects Educational Psychology Effect Size Estimation bias Estimation methods Hierarchical Linear Modeling Learning and Instruction Least Squares Statistics Literature Reviews Maximum likelihood estimation Maximum Likelihood Statistics Multilevel models Multivariate Analysis Population estimates Research methods Research Problems Review Article REVIEW ARTICLES Sample Size Sampling distributions Simulation Simulations Standard error Statistical Analysis Statistical variance Studies |
title | The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Small%20Sample%20Size%20on%20Two-Level%20Model%20Estimates:%20A%20Review%20and%20Illustration&rft.jtitle=Educational%20psychology%20review&rft.au=McNeish,%20Daniel%20M.&rft.date=2016-06-01&rft.volume=28&rft.issue=2&rft.spage=295&rft.epage=314&rft.pages=295-314&rft.issn=1040-726X&rft.eissn=1573-336X&rft.coden=EPSREO&rft_id=info:doi/10.1007/s10648-014-9287-x&rft_dat=%3Cgale_proqu%3EA713722217%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-a6b5fa43ef8a2c67bdc1ffe6fa8bced5ff47826b93765c86ffd929ec25e7fe203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788492198&rft_id=info:pmid/&rft_galeid=A713722217&rft_ericid=EJ1100669&rft_jstor_id=24761234&rfr_iscdi=true |