Loading…
ID: 63: RAPID 3D PRECLINICAL QUANTITATIVE LUNG IMAGING WITH ULTRASHORT-ECHO TIME (UTE) MRI IN A MOUSE MODEL OF CYSTIC FIBROSIS LUNG DISEASE
Currently, the life expectancy for cystic fibrosis (CF) lung disease is less than 40 years due to decreasing lung function despite significant advances in the care and treatment of these patients. As patients live longer, the preservation of healthy lung tissue becomes of paramount importance to imp...
Saved in:
Published in: | Journal of investigative medicine 2016-04, Vol.64 (4), p.975 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Currently, the life expectancy for cystic fibrosis (CF) lung disease is less than 40 years due to decreasing lung function despite significant advances in the care and treatment of these patients. As patients live longer, the preservation of healthy lung tissue becomes of paramount importance to improve patient quality of life and increase life span. To do this, an understanding of the early disease processes is needed as is an ability to monitor the efficacy of therapeutic interventions early in life. CF lung disease, similar to other lung diseases, is a regional disease causing local dysfunction in the lung tissue and changes in lung anatomy. It is important for any monitoring or diagnostic tool to be sensitive to early regional disease which current methods (spirometry) are not. This lack of sensitivity to regional disease limits the ability of physicians and researchers to track the earliest stages of disease and assess treatment efficacy in these initial disease stages, ideally in infants and young children. Three dimensional imaging presents a unique solution to this problem by providing a non-invasive, volumetric investigation of the lung tissue. Computed tomography has long been the first choice in clinical lung imaging offering excellent resolution and fast imaging times but results in repeated exposure to ionizing radiation. Because the patient populations of interest are infants and children, avoidance of unnecessary, repeated radiation exposure during longitudinal monitoring is desirable. This combination of clinical and research need has led us to the exploration of rapid MRI techniques for lung imaging. We are interested in developing a novel, robust quantitative Magnetic Resonance Imaging technique that allows for 3D investigation of the lung tissue and is sensitive to early disease changes. Our hypothesis is that quantitative imaging will be able to detect changes in regional lung anatomy as an indication of early disease before disease is detected by standard methods. To accomplish this goal, we are proposing the implementation of multiple advanced quantitative MRI techniques including T1-mapping using Saturation-Recovery Look-Locker mapping and simultaneous multiple parameter mapping (combinations of T1, T2, T2*) using the recently developed Magnetic Resonance Fingerprinting method. An ultra-short echo time acquisition will be used to ensure imaging of the rapidly decaying MRI signal in the lung is possible. Using a radial acquisition, we |
---|---|
ISSN: | 1081-5589 1708-8267 |
DOI: | 10.1136/jim-2016-000120.133 |