Loading…
An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case
By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is det...
Saved in:
Published in: | Physics and chemistry of liquids 2016-09, Vol.54 (5), p.632-646 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23 |
container_end_page | 646 |
container_issue | 5 |
container_start_page | 632 |
container_title | Physics and chemistry of liquids |
container_volume | 54 |
creator | Vázquez-Rodríguez, Ó. Ruiz-Estrada, H. |
description | By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system. |
doi_str_mv | 10.1080/00319104.2016.1139708 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1789760040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825481043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</originalsourceid><addsrcrecordid>eNp9kE1L5TAUhsPgwFw_fsJAwY2bXs9pkjZ1pYhfIMzGWbgKaZqM0ba5JimO_97UqxsXrt4D53kPh4eQ3whrBAHHABRbBLauAOs1Im0bED_ICqFqS2Acd8hqYcoF-kV2Y3wEqLDmuCL_zqbC_N8MTru0DMHE6PxUWB-K9GCKmFRyOkeYdZqDKazSKe-WvSrGeUiuvJ-f1Isq7DC7_uS95SdTaj9uck6p0CqaffLTqiGag4_cI38vL-7Or8vbP1c352e3pWYoUikYqqYDTQW1qGtNmWB9V1vKKW-RKyb6TvOc0NcNmqYTVWXBaN61tOV9RffI0fbuJvjn2cQkRxe1GQY1GT9HiaLiTGQPNKOHX9BHP4cpfyexEW1TAzDIFN9SOvgYg7FyE9yowqtEkIt--alfLvrlh_7cO9323JRdjerFh6GXSb0OPtigJu2ipN-feAOXd4t2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789760040</pqid></control><display><type>article</type><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><source>Taylor and Francis Science and Technology Collection</source><creator>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</creator><creatorcontrib>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</creatorcontrib><description>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</description><identifier>ISSN: 0031-9104</identifier><identifier>EISSN: 1029-0451</identifier><identifier>DOI: 10.1080/00319104.2016.1139708</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Approximation ; Closures ; Computer simulation ; Demand ; Economic models ; intermediate range order (IRO) structure ; Liquids ; Mathematical analysis ; mean spherical approximation (MSA) ; Monte Carlo simulation ; Multi-Yukawa fluid ; Nonlinear equations ; potential short-range attraction and long-range repulsion ; Radial distribution ; radial distribution function ; static structure factor ; Structure factor</subject><ispartof>Physics and chemistry of liquids, 2016-09, Vol.54 (5), p.632-646</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</citedby><cites>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vázquez-Rodríguez, Ó.</creatorcontrib><creatorcontrib>Ruiz-Estrada, H.</creatorcontrib><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><title>Physics and chemistry of liquids</title><description>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</description><subject>Approximation</subject><subject>Closures</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Economic models</subject><subject>intermediate range order (IRO) structure</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>mean spherical approximation (MSA)</subject><subject>Monte Carlo simulation</subject><subject>Multi-Yukawa fluid</subject><subject>Nonlinear equations</subject><subject>potential short-range attraction and long-range repulsion</subject><subject>Radial distribution</subject><subject>radial distribution function</subject><subject>static structure factor</subject><subject>Structure factor</subject><issn>0031-9104</issn><issn>1029-0451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1L5TAUhsPgwFw_fsJAwY2bXs9pkjZ1pYhfIMzGWbgKaZqM0ba5JimO_97UqxsXrt4D53kPh4eQ3whrBAHHABRbBLauAOs1Im0bED_ICqFqS2Acd8hqYcoF-kV2Y3wEqLDmuCL_zqbC_N8MTru0DMHE6PxUWB-K9GCKmFRyOkeYdZqDKazSKe-WvSrGeUiuvJ-f1Isq7DC7_uS95SdTaj9uck6p0CqaffLTqiGag4_cI38vL-7Or8vbP1c352e3pWYoUikYqqYDTQW1qGtNmWB9V1vKKW-RKyb6TvOc0NcNmqYTVWXBaN61tOV9RffI0fbuJvjn2cQkRxe1GQY1GT9HiaLiTGQPNKOHX9BHP4cpfyexEW1TAzDIFN9SOvgYg7FyE9yowqtEkIt--alfLvrlh_7cO9323JRdjerFh6GXSb0OPtigJu2ipN-feAOXd4t2</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>Vázquez-Rodríguez, Ó.</creator><creator>Ruiz-Estrada, H.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160902</creationdate><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><author>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Closures</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Economic models</topic><topic>intermediate range order (IRO) structure</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>mean spherical approximation (MSA)</topic><topic>Monte Carlo simulation</topic><topic>Multi-Yukawa fluid</topic><topic>Nonlinear equations</topic><topic>potential short-range attraction and long-range repulsion</topic><topic>Radial distribution</topic><topic>radial distribution function</topic><topic>static structure factor</topic><topic>Structure factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vázquez-Rodríguez, Ó.</creatorcontrib><creatorcontrib>Ruiz-Estrada, H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics and chemistry of liquids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vázquez-Rodríguez, Ó.</au><au>Ruiz-Estrada, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</atitle><jtitle>Physics and chemistry of liquids</jtitle><date>2016-09-02</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>632</spage><epage>646</epage><pages>632-646</pages><issn>0031-9104</issn><eissn>1029-0451</eissn><abstract>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00319104.2016.1139708</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9104 |
ispartof | Physics and chemistry of liquids, 2016-09, Vol.54 (5), p.632-646 |
issn | 0031-9104 1029-0451 |
language | eng |
recordid | cdi_proquest_journals_1789760040 |
source | Taylor and Francis Science and Technology Collection |
subjects | Approximation Closures Computer simulation Demand Economic models intermediate range order (IRO) structure Liquids Mathematical analysis mean spherical approximation (MSA) Monte Carlo simulation Multi-Yukawa fluid Nonlinear equations potential short-range attraction and long-range repulsion Radial distribution radial distribution function static structure factor Structure factor |
title | An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20explicit%20expression%20for%20the%20static%20structure%20factor%20for%20a%20multi-Yukawa%20fluid:%20the%20one-component%20case&rft.jtitle=Physics%20and%20chemistry%20of%20liquids&rft.au=V%C3%A1zquez-Rodr%C3%ADguez,%20%C3%93.&rft.date=2016-09-02&rft.volume=54&rft.issue=5&rft.spage=632&rft.epage=646&rft.pages=632-646&rft.issn=0031-9104&rft.eissn=1029-0451&rft_id=info:doi/10.1080/00319104.2016.1139708&rft_dat=%3Cproquest_infor%3E1825481043%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1789760040&rft_id=info:pmid/&rfr_iscdi=true |