Loading…

An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case

By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is det...

Full description

Saved in:
Bibliographic Details
Published in:Physics and chemistry of liquids 2016-09, Vol.54 (5), p.632-646
Main Authors: Vázquez-Rodríguez, Ó., Ruiz-Estrada, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23
cites cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23
container_end_page 646
container_issue 5
container_start_page 632
container_title Physics and chemistry of liquids
container_volume 54
creator Vázquez-Rodríguez, Ó.
Ruiz-Estrada, H.
description By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.
doi_str_mv 10.1080/00319104.2016.1139708
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1789760040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825481043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</originalsourceid><addsrcrecordid>eNp9kE1L5TAUhsPgwFw_fsJAwY2bXs9pkjZ1pYhfIMzGWbgKaZqM0ba5JimO_97UqxsXrt4D53kPh4eQ3whrBAHHABRbBLauAOs1Im0bED_ICqFqS2Acd8hqYcoF-kV2Y3wEqLDmuCL_zqbC_N8MTru0DMHE6PxUWB-K9GCKmFRyOkeYdZqDKazSKe-WvSrGeUiuvJ-f1Isq7DC7_uS95SdTaj9uck6p0CqaffLTqiGag4_cI38vL-7Or8vbP1c352e3pWYoUikYqqYDTQW1qGtNmWB9V1vKKW-RKyb6TvOc0NcNmqYTVWXBaN61tOV9RffI0fbuJvjn2cQkRxe1GQY1GT9HiaLiTGQPNKOHX9BHP4cpfyexEW1TAzDIFN9SOvgYg7FyE9yowqtEkIt--alfLvrlh_7cO9323JRdjerFh6GXSb0OPtigJu2ipN-feAOXd4t2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789760040</pqid></control><display><type>article</type><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><source>Taylor and Francis Science and Technology Collection</source><creator>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</creator><creatorcontrib>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</creatorcontrib><description>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</description><identifier>ISSN: 0031-9104</identifier><identifier>EISSN: 1029-0451</identifier><identifier>DOI: 10.1080/00319104.2016.1139708</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Approximation ; Closures ; Computer simulation ; Demand ; Economic models ; intermediate range order (IRO) structure ; Liquids ; Mathematical analysis ; mean spherical approximation (MSA) ; Monte Carlo simulation ; Multi-Yukawa fluid ; Nonlinear equations ; potential short-range attraction and long-range repulsion ; Radial distribution ; radial distribution function ; static structure factor ; Structure factor</subject><ispartof>Physics and chemistry of liquids, 2016-09, Vol.54 (5), p.632-646</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</citedby><cites>FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vázquez-Rodríguez, Ó.</creatorcontrib><creatorcontrib>Ruiz-Estrada, H.</creatorcontrib><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><title>Physics and chemistry of liquids</title><description>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</description><subject>Approximation</subject><subject>Closures</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Economic models</subject><subject>intermediate range order (IRO) structure</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>mean spherical approximation (MSA)</subject><subject>Monte Carlo simulation</subject><subject>Multi-Yukawa fluid</subject><subject>Nonlinear equations</subject><subject>potential short-range attraction and long-range repulsion</subject><subject>Radial distribution</subject><subject>radial distribution function</subject><subject>static structure factor</subject><subject>Structure factor</subject><issn>0031-9104</issn><issn>1029-0451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1L5TAUhsPgwFw_fsJAwY2bXs9pkjZ1pYhfIMzGWbgKaZqM0ba5JimO_97UqxsXrt4D53kPh4eQ3whrBAHHABRbBLauAOs1Im0bED_ICqFqS2Acd8hqYcoF-kV2Y3wEqLDmuCL_zqbC_N8MTru0DMHE6PxUWB-K9GCKmFRyOkeYdZqDKazSKe-WvSrGeUiuvJ-f1Isq7DC7_uS95SdTaj9uck6p0CqaffLTqiGag4_cI38vL-7Or8vbP1c352e3pWYoUikYqqYDTQW1qGtNmWB9V1vKKW-RKyb6TvOc0NcNmqYTVWXBaN61tOV9RffI0fbuJvjn2cQkRxe1GQY1GT9HiaLiTGQPNKOHX9BHP4cpfyexEW1TAzDIFN9SOvgYg7FyE9yowqtEkIt--alfLvrlh_7cO9323JRdjerFh6GXSb0OPtigJu2ipN-feAOXd4t2</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>Vázquez-Rodríguez, Ó.</creator><creator>Ruiz-Estrada, H.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160902</creationdate><title>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</title><author>Vázquez-Rodríguez, Ó. ; Ruiz-Estrada, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Closures</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Economic models</topic><topic>intermediate range order (IRO) structure</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>mean spherical approximation (MSA)</topic><topic>Monte Carlo simulation</topic><topic>Multi-Yukawa fluid</topic><topic>Nonlinear equations</topic><topic>potential short-range attraction and long-range repulsion</topic><topic>Radial distribution</topic><topic>radial distribution function</topic><topic>static structure factor</topic><topic>Structure factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vázquez-Rodríguez, Ó.</creatorcontrib><creatorcontrib>Ruiz-Estrada, H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics and chemistry of liquids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vázquez-Rodríguez, Ó.</au><au>Ruiz-Estrada, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case</atitle><jtitle>Physics and chemistry of liquids</jtitle><date>2016-09-02</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>632</spage><epage>646</epage><pages>632-646</pages><issn>0031-9104</issn><eissn>1029-0451</eissn><abstract>By using the mean spherical approximation, we obtain an analytical expression for the static structure factor (SSF) for a monodisperse system of particles interacting through a potential given by a hard-sphere contribution and M Yukawa terms. This expression depends on scaling matrix Γ, which is determined by solving a set of nonlinear equations. Our theoretical results show that using three Yukawa terms in the closure relation greatly improves the accuracy when compared with hypernetted-chain closure and Monte Carlo simulation data, which display a secondary low-k peak in the SSF, due to the formation of an intermediate range order structure governed by a short-range attraction and a long-range repulsion. We discuss the appearance of such a peak in terms of the microstructure order given by the radial distribution function. Following the original proposal made by Waisman (Mol Phys. 1973; 25:45-48), we give an explicit expression that improves the structural properties of a hard-sphere system.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00319104.2016.1139708</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9104
ispartof Physics and chemistry of liquids, 2016-09, Vol.54 (5), p.632-646
issn 0031-9104
1029-0451
language eng
recordid cdi_proquest_journals_1789760040
source Taylor and Francis Science and Technology Collection
subjects Approximation
Closures
Computer simulation
Demand
Economic models
intermediate range order (IRO) structure
Liquids
Mathematical analysis
mean spherical approximation (MSA)
Monte Carlo simulation
Multi-Yukawa fluid
Nonlinear equations
potential short-range attraction and long-range repulsion
Radial distribution
radial distribution function
static structure factor
Structure factor
title An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20explicit%20expression%20for%20the%20static%20structure%20factor%20for%20a%20multi-Yukawa%20fluid:%20the%20one-component%20case&rft.jtitle=Physics%20and%20chemistry%20of%20liquids&rft.au=V%C3%A1zquez-Rodr%C3%ADguez,%20%C3%93.&rft.date=2016-09-02&rft.volume=54&rft.issue=5&rft.spage=632&rft.epage=646&rft.pages=632-646&rft.issn=0031-9104&rft.eissn=1029-0451&rft_id=info:doi/10.1080/00319104.2016.1139708&rft_dat=%3Cproquest_infor%3E1825481043%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-841a7b0c383f1c6c3484db6f3535915a48dbc55a40d671e7b822f0ec5b9395d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1789760040&rft_id=info:pmid/&rfr_iscdi=true