Loading…
Evaluation of gamma radiation-induced cytotoxicity of breast cancer cells: Is there a time-dependent dose with high efficiency?
Context: Radiotherapy is one of the important treatment modalities in the management of breast cancer. Aims: The aim of this study is to study the efficient treatment of breast cancer as related to the dose delivery. Materials and Methods: The human breast cancer cell lines (MCF-7) cells were cultur...
Saved in:
Published in: | Indian journal of cancer 2016-01, Vol.53 (1), p.25-28 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Context: Radiotherapy is one of the important treatment modalities in the management of breast cancer. Aims: The aim of this study is to study the efficient treatment of breast cancer as related to the dose delivery. Materials and Methods: The human breast cancer cell lines (MCF-7) cells were cultured and exposed by 1, 2, 4, 6, 8, 10, and 20 Gy of γ-rays. Radiation-induced cell death was detected and evaluated, using three assay methods: Cell viability, clonogenic cell survival assay and induction of apoptosis. The cell viability was determined using trypan blue staining, 24 and 72 h post-irradiation. The survival fraction (SF) was determined by colony counting, 14 days after exposure and the apoptotic cell death was determined using the TUNEL assay. Statistical Analysis Used: One- or two-way analysis of variance was deemed as appropriate, followed by relevant post t-test to determine P values. Results: The difference of MCF-7 cell death through increasing post-radiation time from 24 to 72 h following the dose of 1, 6 and 10 Gy was found to be 2%, 9.6% and 7.14%, respectively. D0of MCF-7 was 220 cGy and the SF in the cells irradiated by 1 Gy and 10 Gy doses were 0.8 and 0.0001, respectively. The estimated variances were 2%, 11.1% and 8.4%, between 24 h and 72 h post-radiation apoptosis death for 1, 6, and 10 Gy, respectively. Conclusions: The dose and time dependence inducing apoptotic death was significant (P = 0.001). The delayed mortality and apoptosis was observed in MCF-7 cell, but the variance of total cell death and apoptosis in 24 and 72 h post-radiation with 6 Gy was obviously more than that with other doses. |
---|---|
ISSN: | 0019-509X 1998-4774 |
DOI: | 10.4103/0019-509X.180862 |