Loading…
Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition
The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Te...
Saved in:
Published in: | Journal of electronic materials 2016-07, Vol.45 (7), p.3546-3553 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through
in situ
reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-016-4514-5 |