Loading…
Analysis of Impact of Bottom Electrode Position on Dynamic Pull-In Parameters of Microcantilevers
The stable range of MEMS electrostatically actuated beam during the pull-in process is crucial to the device performance. Different devices have specific requirements for stable pull-in region based on their applications. In this paper, Rayleigh-Ritz energy method is used to establish dynamic pull-i...
Saved in:
Published in: | Key engineering materials 2015-05, Vol.645-646, p.706-718 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stable range of MEMS electrostatically actuated beam during the pull-in process is crucial to the device performance. Different devices have specific requirements for stable pull-in region based on their applications. In this paper, Rayleigh-Ritz energy method is used to establish dynamic pull-in model of electrostatic cantilever actuated by a step voltage. Modified trial function is derived according to different position of bottom electrode. The model takes into account the effects of fringe capacitance and variable cross-sectional beam. Published numerical methods and experimental data are used to verify the model . The impact of bottom electrode position on pull-in parameters is analyzed in present model. With fitting empirical equations, pull-in parameters can be easily satisfied through the distribution of bottom electrode, which provide an effective reference for the design of MEMS electrostatically actuated beam under given pull-in parameters . |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.645-646.706 |