Loading…
GMM with Multiple Missing Variables
We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric gener...
Saved in:
Published in: | Journal of applied econometrics (Chichester, England) England), 2016-06, Vol.31 (4), p.678-706 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323 |
---|---|
cites | cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323 |
container_end_page | 706 |
container_issue | 4 |
container_start_page | 678 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 31 |
creator | Chaudhuri, Saraswata Guilkey, David K. |
description | We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods. |
doi_str_mv | 10.1002/jae.2444 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1792971551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609642</jstor_id><sourcerecordid>26609642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</originalsourceid><addsrcrecordid>eNp10E1PwkAQBuCN0UREE_-ASRMuXoqzX93ukRBBCdVoUI-bpezq1kpxtwT595aU4MnTHOaZd5IXoUsMfQxAbgpt-oQxdoQ6GKSMMeH8GHUgTWksCCen6CyEAgASANFBvXGWRRtXf0TZuqzdqjRR5kJwy_foVXun56UJ5-jE6jKYi_3sopfR7Wx4F08fx_fDwTTOGccsFulcWJoSgY22BLSmQou5ocDSXGKaaFgQbHKqaU4XWDOcJtRa3pxwSS0ltIt6be7KV99rE2pVVGu_bF4qLCSRAnOOG3XdqtxXIXhj1cq7L-23CoPaVaCaCtSugobGLd240mz_dWoyuN37q9YXoa78wZMkAZkw8pfnQm1-DnvtP1UiqODq7WGsZsNJ-vw0EkrQX9Zcckw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792971551</pqid></control><display><type>article</type><title>GMM with Multiple Missing Variables</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read & Publish Collection</source><source>JSTOR</source><creator>Chaudhuri, Saraswata ; Guilkey, David K.</creator><creatorcontrib>Chaudhuri, Saraswata ; Guilkey, David K.</creatorcontrib><description>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2444</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Economic models ; Generalized method of moments ; Variables</subject><ispartof>Journal of applied econometrics (Chichester, England), 2016-06, Vol.31 (4), p.678-706</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</citedby><cites>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609642$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609642$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,58238,58471</link.rule.ids></links><search><creatorcontrib>Chaudhuri, Saraswata</creatorcontrib><creatorcontrib>Guilkey, David K.</creatorcontrib><title>GMM with Multiple Missing Variables</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</description><subject>Economic models</subject><subject>Generalized method of moments</subject><subject>Variables</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp10E1PwkAQBuCN0UREE_-ASRMuXoqzX93ukRBBCdVoUI-bpezq1kpxtwT595aU4MnTHOaZd5IXoUsMfQxAbgpt-oQxdoQ6GKSMMeH8GHUgTWksCCen6CyEAgASANFBvXGWRRtXf0TZuqzdqjRR5kJwy_foVXun56UJ5-jE6jKYi_3sopfR7Wx4F08fx_fDwTTOGccsFulcWJoSgY22BLSmQou5ocDSXGKaaFgQbHKqaU4XWDOcJtRa3pxwSS0ltIt6be7KV99rE2pVVGu_bF4qLCSRAnOOG3XdqtxXIXhj1cq7L-23CoPaVaCaCtSugobGLd240mz_dWoyuN37q9YXoa78wZMkAZkw8pfnQm1-DnvtP1UiqODq7WGsZsNJ-vw0EkrQX9Zcckw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Chaudhuri, Saraswata</creator><creator>Guilkey, David K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201606</creationdate><title>GMM with Multiple Missing Variables</title><author>Chaudhuri, Saraswata ; Guilkey, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic models</topic><topic>Generalized method of moments</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Saraswata</creatorcontrib><creatorcontrib>Guilkey, David K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Saraswata</au><au>Guilkey, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMM with Multiple Missing Variables</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2016-06</date><risdate>2016</risdate><volume>31</volume><issue>4</issue><spage>678</spage><epage>706</epage><pages>678-706</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jae.2444</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2016-06, Vol.31 (4), p.678-706 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_journals_1792971551 |
source | International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection; JSTOR |
subjects | Economic models Generalized method of moments Variables |
title | GMM with Multiple Missing Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMM%20with%20Multiple%20Missing%20Variables&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Chaudhuri,%20Saraswata&rft.date=2016-06&rft.volume=31&rft.issue=4&rft.spage=678&rft.epage=706&rft.pages=678-706&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.2444&rft_dat=%3Cjstor_proqu%3E26609642%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1792971551&rft_id=info:pmid/&rft_jstor_id=26609642&rfr_iscdi=true |