Loading…

GMM with Multiple Missing Variables

We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric gener...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied econometrics (Chichester, England) England), 2016-06, Vol.31 (4), p.678-706
Main Authors: Chaudhuri, Saraswata, Guilkey, David K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323
cites cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323
container_end_page 706
container_issue 4
container_start_page 678
container_title Journal of applied econometrics (Chichester, England)
container_volume 31
creator Chaudhuri, Saraswata
Guilkey, David K.
description We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.
doi_str_mv 10.1002/jae.2444
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1792971551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609642</jstor_id><sourcerecordid>26609642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</originalsourceid><addsrcrecordid>eNp10E1PwkAQBuCN0UREE_-ASRMuXoqzX93ukRBBCdVoUI-bpezq1kpxtwT595aU4MnTHOaZd5IXoUsMfQxAbgpt-oQxdoQ6GKSMMeH8GHUgTWksCCen6CyEAgASANFBvXGWRRtXf0TZuqzdqjRR5kJwy_foVXun56UJ5-jE6jKYi_3sopfR7Wx4F08fx_fDwTTOGccsFulcWJoSgY22BLSmQou5ocDSXGKaaFgQbHKqaU4XWDOcJtRa3pxwSS0ltIt6be7KV99rE2pVVGu_bF4qLCSRAnOOG3XdqtxXIXhj1cq7L-23CoPaVaCaCtSugobGLd240mz_dWoyuN37q9YXoa78wZMkAZkw8pfnQm1-DnvtP1UiqODq7WGsZsNJ-vw0EkrQX9Zcckw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792971551</pqid></control><display><type>article</type><title>GMM with Multiple Missing Variables</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>JSTOR</source><creator>Chaudhuri, Saraswata ; Guilkey, David K.</creator><creatorcontrib>Chaudhuri, Saraswata ; Guilkey, David K.</creatorcontrib><description>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2444</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Economic models ; Generalized method of moments ; Variables</subject><ispartof>Journal of applied econometrics (Chichester, England), 2016-06, Vol.31 (4), p.678-706</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</citedby><cites>FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609642$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609642$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,58238,58471</link.rule.ids></links><search><creatorcontrib>Chaudhuri, Saraswata</creatorcontrib><creatorcontrib>Guilkey, David K.</creatorcontrib><title>GMM with Multiple Missing Variables</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</description><subject>Economic models</subject><subject>Generalized method of moments</subject><subject>Variables</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp10E1PwkAQBuCN0UREE_-ASRMuXoqzX93ukRBBCdVoUI-bpezq1kpxtwT595aU4MnTHOaZd5IXoUsMfQxAbgpt-oQxdoQ6GKSMMeH8GHUgTWksCCen6CyEAgASANFBvXGWRRtXf0TZuqzdqjRR5kJwy_foVXun56UJ5-jE6jKYi_3sopfR7Wx4F08fx_fDwTTOGccsFulcWJoSgY22BLSmQou5ocDSXGKaaFgQbHKqaU4XWDOcJtRa3pxwSS0ltIt6be7KV99rE2pVVGu_bF4qLCSRAnOOG3XdqtxXIXhj1cq7L-23CoPaVaCaCtSugobGLd240mz_dWoyuN37q9YXoa78wZMkAZkw8pfnQm1-DnvtP1UiqODq7WGsZsNJ-vw0EkrQX9Zcckw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Chaudhuri, Saraswata</creator><creator>Guilkey, David K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201606</creationdate><title>GMM with Multiple Missing Variables</title><author>Chaudhuri, Saraswata ; Guilkey, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic models</topic><topic>Generalized method of moments</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Saraswata</creatorcontrib><creatorcontrib>Guilkey, David K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Saraswata</au><au>Guilkey, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMM with Multiple Missing Variables</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2016-06</date><risdate>2016</risdate><volume>31</volume><issue>4</issue><spage>678</spage><epage>706</epage><pages>678-706</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>We consider efficient estimation in moment conditions models with non-monotonically missing-at-random (MAR) variables. A version of MAR point-identifies the parameters of interest and gives a closed-form efficient influence function that can be used directly to obtain efficient semi-parametric generalized method of moments (GMM) estimators under standard regularity conditions. A small-scale Monte Carlo experiment with MAR instrumental variables demonstrates that the asymptotic superiority of these estimators over the standard methods carries over to finite samples. An illustrative empirical study of the relationship between a child’s years of schooling and number of siblings indicates that these GMM estimators can generate results with substantive differences from standard methods.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jae.2444</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2016-06, Vol.31 (4), p.678-706
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_1792971551
source International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection; JSTOR
subjects Economic models
Generalized method of moments
Variables
title GMM with Multiple Missing Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMM%20with%20Multiple%20Missing%20Variables&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Chaudhuri,%20Saraswata&rft.date=2016-06&rft.volume=31&rft.issue=4&rft.spage=678&rft.epage=706&rft.pages=678-706&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.2444&rft_dat=%3Cjstor_proqu%3E26609642%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4514-78b7f38271eaf20aa37a7be3048c9136a0d21ec3a3c3d1a41863ff5f38593f323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1792971551&rft_id=info:pmid/&rft_jstor_id=26609642&rfr_iscdi=true