Loading…
Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha]
Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds fo...
Saved in:
Published in: | Advanced healthcare materials 2016-06, Vol.5 (11), p.1299 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 11 |
container_start_page | 1299 |
container_title | Advanced healthcare materials |
container_volume | 5 |
creator | Zhang, Wenjie Chang, Qing Xu, Ling Li, Guanglong Yang, Guangzheng Ding, Xun Wang, Xiansong Cui, Daxiang Jiang, Xinquan |
description | Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2O nanoparticles of [asymptotically =]30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1[alpha] in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration. |
doi_str_mv | 10.1002/adhm.201500824 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1794522684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4081317821</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-7e8cf32335b7ed7b0ec054906c04c4a05927df246d079dba9ab23cf751c18c6f3</originalsourceid><addsrcrecordid>eNo9jd1LwzAUxYMoOOZefQ743JmkSdo8zqKbMHT49SIybvPhMrqmpu0Qn_zTrUw8L-eew-V3EDqnZEoJYZdgNrspI1QQkjN-hEaMKpYwKdTx_83JKZq07ZYMkoLKnI7Q9zxCs7G1xfef3tikCE1jI76DOuiwa0Lru98SOmvwKsTQt7iAFX7U4FyoDHYh4hdodV9B9F_D01UYWA_2fUBG6Hyo8d4DnunO7w8xOLzwLqGvUDUbeDtDJw6q1k7-fIyeb66fikWyvJ_fFrNl0lCadklmc-1SlqaizKzJSmI1EVwRqQnXHIhQLDOOcWlIpkwJCkqWapcJqmmupUvH6OLAbWL46G3brbehj_UwuaaZ4oIxmfP0B5O9YyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794522684</pqid></control><display><type>article</type><title>Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha]</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Wenjie ; Chang, Qing ; Xu, Ling ; Li, Guanglong ; Yang, Guangzheng ; Ding, Xun ; Wang, Xiansong ; Cui, Daxiang ; Jiang, Xinquan</creator><creatorcontrib>Zhang, Wenjie ; Chang, Qing ; Xu, Ling ; Li, Guanglong ; Yang, Guangzheng ; Ding, Xun ; Wang, Xiansong ; Cui, Daxiang ; Jiang, Xinquan</creatorcontrib><description>Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2O nanoparticles of [asymptotically =]30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1[alpha] in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201500824</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Calcium phosphates ; Nanocomposites</subject><ispartof>Advanced healthcare materials, 2016-06, Vol.5 (11), p.1299</ispartof><rights>Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><creatorcontrib>Li, Guanglong</creatorcontrib><creatorcontrib>Yang, Guangzheng</creatorcontrib><creatorcontrib>Ding, Xun</creatorcontrib><creatorcontrib>Wang, Xiansong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Jiang, Xinquan</creatorcontrib><title>Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha]</title><title>Advanced healthcare materials</title><description>Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2O nanoparticles of [asymptotically =]30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1[alpha] in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration.</description><subject>Calcium phosphates</subject><subject>Nanocomposites</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jd1LwzAUxYMoOOZefQ743JmkSdo8zqKbMHT49SIybvPhMrqmpu0Qn_zTrUw8L-eew-V3EDqnZEoJYZdgNrspI1QQkjN-hEaMKpYwKdTx_83JKZq07ZYMkoLKnI7Q9zxCs7G1xfef3tikCE1jI76DOuiwa0Lru98SOmvwKsTQt7iAFX7U4FyoDHYh4hdodV9B9F_D01UYWA_2fUBG6Hyo8d4DnunO7w8xOLzwLqGvUDUbeDtDJw6q1k7-fIyeb66fikWyvJ_fFrNl0lCadklmc-1SlqaizKzJSmI1EVwRqQnXHIhQLDOOcWlIpkwJCkqWapcJqmmupUvH6OLAbWL46G3brbehj_UwuaaZ4oIxmfP0B5O9YyA</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Zhang, Wenjie</creator><creator>Chang, Qing</creator><creator>Xu, Ling</creator><creator>Li, Guanglong</creator><creator>Yang, Guangzheng</creator><creator>Ding, Xun</creator><creator>Wang, Xiansong</creator><creator>Cui, Daxiang</creator><creator>Jiang, Xinquan</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160608</creationdate><title>Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha]</title><author>Zhang, Wenjie ; Chang, Qing ; Xu, Ling ; Li, Guanglong ; Yang, Guangzheng ; Ding, Xun ; Wang, Xiansong ; Cui, Daxiang ; Jiang, Xinquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-7e8cf32335b7ed7b0ec054906c04c4a05927df246d079dba9ab23cf751c18c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calcium phosphates</topic><topic>Nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><creatorcontrib>Li, Guanglong</creatorcontrib><creatorcontrib>Yang, Guangzheng</creatorcontrib><creatorcontrib>Ding, Xun</creatorcontrib><creatorcontrib>Wang, Xiansong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Jiang, Xinquan</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenjie</au><au>Chang, Qing</au><au>Xu, Ling</au><au>Li, Guanglong</au><au>Yang, Guangzheng</au><au>Ding, Xun</au><au>Wang, Xiansong</au><au>Cui, Daxiang</au><au>Jiang, Xinquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha]</atitle><jtitle>Advanced healthcare materials</jtitle><date>2016-06-08</date><risdate>2016</risdate><volume>5</volume><issue>11</issue><spage>1299</spage><pages>1299-</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2O nanoparticles of [asymptotically =]30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1[alpha] in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.201500824</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2016-06, Vol.5 (11), p.1299 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_journals_1794522684 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Calcium phosphates Nanocomposites |
title | Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1[alpha] |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide-Copper%20Nanocomposite-Coated%20Porous%20CaP%20Scaffold%20for%20Vascularized%20Bone%20Regeneration%20via%20Activation%20of%20Hif-1%5Balpha%5D&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zhang,%20Wenjie&rft.date=2016-06-08&rft.volume=5&rft.issue=11&rft.spage=1299&rft.pages=1299-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201500824&rft_dat=%3Cproquest%3E4081317821%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-7e8cf32335b7ed7b0ec054906c04c4a05927df246d079dba9ab23cf751c18c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1794522684&rft_id=info:pmid/&rfr_iscdi=true |