Loading…

Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids

The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly opti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2016-07, Vol.7 (4), p.2050-2060
Main Authors: Wu, Dan, Lesieutre, Bernard C., Ramanathan, Parameswaran, Kakunoori, Bhuvana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3
cites cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3
container_end_page 2060
container_issue 4
container_start_page 2050
container_title IEEE transactions on smart grid
container_volume 7
creator Wu, Dan
Lesieutre, Bernard C.
Ramanathan, Parameswaran
Kakunoori, Bhuvana
description The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.
doi_str_mv 10.1109/TSG.2016.2544179
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1798894264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7438892</ieee_id><sourcerecordid>4096834731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</originalsourceid><addsrcrecordid>eNpdkEtrwkAQgENpoWK9F3pZ6KWX2H1ls3sUUVtQDNSel2QzKSsxsbuJ4r_viuKhc5iZwzcPvih6JnhMCFbvm6_FmGIixjThnKTqLhoQxVXMsCD3tz5hj9HI-y0OwRgTVA2iLHPgwR1s84MyZw-5OaG2QpMpWu87u8trlLVHcGhet0e0akuoPbINWvV1Z-Msd90JzWownbMGLZwt_VP0UOW1h9G1DqPv-Wwz_YiX68XndLKMDROii6HkJcVYJIyQQkooQCnODZEhcSNVAQnmKVSlSKnghZKGCJmDLEvJFc1zNozeLnv3rv3twXd6Z72Bus4baHuviaRJQglP0oC-_kO3be-a8J0OrqRUPJwIFL5QxrXeO6j03gUB7qQJ1mfLOljWZ8v6ajmMvFxGLADc8JSzsJOyP1hPdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894264</pqid></control><display><type>article</type><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><source>IEEE Xplore (Online service)</source><creator>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</creator><creatorcontrib>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</creatorcontrib><description>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2544179</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternating current ; Computation ; Computational modeling ; Cryptography ; Electric grid ; Electric power systems ; Information dissemination ; Load flow ; Mathematical model ; optimal power flow ; Optimization ; Platforms ; Power flow ; Privacy ; privacy and security ; Security ; Smart grid</subject><ispartof>IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.2050-2060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</citedby><cites>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7438892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids></links><search><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Lesieutre, Bernard C.</creatorcontrib><creatorcontrib>Ramanathan, Parameswaran</creatorcontrib><creatorcontrib>Kakunoori, Bhuvana</creatorcontrib><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</description><subject>Alternating current</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Cryptography</subject><subject>Electric grid</subject><subject>Electric power systems</subject><subject>Information dissemination</subject><subject>Load flow</subject><subject>Mathematical model</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Platforms</subject><subject>Power flow</subject><subject>Privacy</subject><subject>privacy and security</subject><subject>Security</subject><subject>Smart grid</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkEtrwkAQgENpoWK9F3pZ6KWX2H1ls3sUUVtQDNSel2QzKSsxsbuJ4r_viuKhc5iZwzcPvih6JnhMCFbvm6_FmGIixjThnKTqLhoQxVXMsCD3tz5hj9HI-y0OwRgTVA2iLHPgwR1s84MyZw-5OaG2QpMpWu87u8trlLVHcGhet0e0akuoPbINWvV1Z-Msd90JzWownbMGLZwt_VP0UOW1h9G1DqPv-Wwz_YiX68XndLKMDROii6HkJcVYJIyQQkooQCnODZEhcSNVAQnmKVSlSKnghZKGCJmDLEvJFc1zNozeLnv3rv3twXd6Z72Bus4baHuviaRJQglP0oC-_kO3be-a8J0OrqRUPJwIFL5QxrXeO6j03gUB7qQJ1mfLOljWZ8v6ajmMvFxGLADc8JSzsJOyP1hPdkY</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wu, Dan</creator><creator>Lesieutre, Bernard C.</creator><creator>Ramanathan, Parameswaran</creator><creator>Kakunoori, Bhuvana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><author>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternating current</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Cryptography</topic><topic>Electric grid</topic><topic>Electric power systems</topic><topic>Information dissemination</topic><topic>Load flow</topic><topic>Mathematical model</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Platforms</topic><topic>Power flow</topic><topic>Privacy</topic><topic>privacy and security</topic><topic>Security</topic><topic>Smart grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Lesieutre, Bernard C.</creatorcontrib><creatorcontrib>Ramanathan, Parameswaran</creatorcontrib><creatorcontrib>Kakunoori, Bhuvana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dan</au><au>Lesieutre, Bernard C.</au><au>Ramanathan, Parameswaran</au><au>Kakunoori, Bhuvana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>2050</spage><epage>2060</epage><pages>2050-2060</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2544179</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.2050-2060
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_1798894264
source IEEE Xplore (Online service)
subjects Alternating current
Computation
Computational modeling
Cryptography
Electric grid
Electric power systems
Information dissemination
Load flow
Mathematical model
optimal power flow
Optimization
Platforms
Power flow
Privacy
privacy and security
Security
Smart grid
title Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preserving%20Privacy%20of%20AC%20Optimal%20Power%20Flow%20Models%20in%20Multi-Party%20Electric%20Grids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wu,%20Dan&rft.date=2016-07-01&rft.volume=7&rft.issue=4&rft.spage=2050&rft.epage=2060&rft.pages=2050-2060&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2544179&rft_dat=%3Cproquest_cross%3E4096834731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798894264&rft_id=info:pmid/&rft_ieee_id=7438892&rfr_iscdi=true