Loading…
Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids
The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly opti...
Saved in:
Published in: | IEEE transactions on smart grid 2016-07, Vol.7 (4), p.2050-2060 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3 |
container_end_page | 2060 |
container_issue | 4 |
container_start_page | 2050 |
container_title | IEEE transactions on smart grid |
container_volume | 7 |
creator | Wu, Dan Lesieutre, Bernard C. Ramanathan, Parameswaran Kakunoori, Bhuvana |
description | The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants. |
doi_str_mv | 10.1109/TSG.2016.2544179 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1798894264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7438892</ieee_id><sourcerecordid>4096834731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</originalsourceid><addsrcrecordid>eNpdkEtrwkAQgENpoWK9F3pZ6KWX2H1ls3sUUVtQDNSel2QzKSsxsbuJ4r_viuKhc5iZwzcPvih6JnhMCFbvm6_FmGIixjThnKTqLhoQxVXMsCD3tz5hj9HI-y0OwRgTVA2iLHPgwR1s84MyZw-5OaG2QpMpWu87u8trlLVHcGhet0e0akuoPbINWvV1Z-Msd90JzWownbMGLZwt_VP0UOW1h9G1DqPv-Wwz_YiX68XndLKMDROii6HkJcVYJIyQQkooQCnODZEhcSNVAQnmKVSlSKnghZKGCJmDLEvJFc1zNozeLnv3rv3twXd6Z72Bus4baHuviaRJQglP0oC-_kO3be-a8J0OrqRUPJwIFL5QxrXeO6j03gUB7qQJ1mfLOljWZ8v6ajmMvFxGLADc8JSzsJOyP1hPdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894264</pqid></control><display><type>article</type><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><source>IEEE Xplore (Online service)</source><creator>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</creator><creatorcontrib>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</creatorcontrib><description>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2544179</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternating current ; Computation ; Computational modeling ; Cryptography ; Electric grid ; Electric power systems ; Information dissemination ; Load flow ; Mathematical model ; optimal power flow ; Optimization ; Platforms ; Power flow ; Privacy ; privacy and security ; Security ; Smart grid</subject><ispartof>IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.2050-2060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</citedby><cites>FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7438892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids></links><search><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Lesieutre, Bernard C.</creatorcontrib><creatorcontrib>Ramanathan, Parameswaran</creatorcontrib><creatorcontrib>Kakunoori, Bhuvana</creatorcontrib><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</description><subject>Alternating current</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Cryptography</subject><subject>Electric grid</subject><subject>Electric power systems</subject><subject>Information dissemination</subject><subject>Load flow</subject><subject>Mathematical model</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Platforms</subject><subject>Power flow</subject><subject>Privacy</subject><subject>privacy and security</subject><subject>Security</subject><subject>Smart grid</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkEtrwkAQgENpoWK9F3pZ6KWX2H1ls3sUUVtQDNSel2QzKSsxsbuJ4r_viuKhc5iZwzcPvih6JnhMCFbvm6_FmGIixjThnKTqLhoQxVXMsCD3tz5hj9HI-y0OwRgTVA2iLHPgwR1s84MyZw-5OaG2QpMpWu87u8trlLVHcGhet0e0akuoPbINWvV1Z-Msd90JzWownbMGLZwt_VP0UOW1h9G1DqPv-Wwz_YiX68XndLKMDROii6HkJcVYJIyQQkooQCnODZEhcSNVAQnmKVSlSKnghZKGCJmDLEvJFc1zNozeLnv3rv3twXd6Z72Bus4baHuviaRJQglP0oC-_kO3be-a8J0OrqRUPJwIFL5QxrXeO6j03gUB7qQJ1mfLOljWZ8v6ajmMvFxGLADc8JSzsJOyP1hPdkY</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wu, Dan</creator><creator>Lesieutre, Bernard C.</creator><creator>Ramanathan, Parameswaran</creator><creator>Kakunoori, Bhuvana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</title><author>Wu, Dan ; Lesieutre, Bernard C. ; Ramanathan, Parameswaran ; Kakunoori, Bhuvana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternating current</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Cryptography</topic><topic>Electric grid</topic><topic>Electric power systems</topic><topic>Information dissemination</topic><topic>Load flow</topic><topic>Mathematical model</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Platforms</topic><topic>Power flow</topic><topic>Privacy</topic><topic>privacy and security</topic><topic>Security</topic><topic>Smart grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Lesieutre, Bernard C.</creatorcontrib><creatorcontrib>Ramanathan, Parameswaran</creatorcontrib><creatorcontrib>Kakunoori, Bhuvana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dan</au><au>Lesieutre, Bernard C.</au><au>Ramanathan, Parameswaran</au><au>Kakunoori, Bhuvana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>2050</spage><epage>2060</epage><pages>2050-2060</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The electric power grid is owned and operated by many competing providers who do not want to reveal their sensitive information to other providers. This competitive environment motivates the use of a third-party (cloud-computing) platform that combines information from each provider and jointly optimizes resources in the entire grid. Since the power system structure and component values are confidential, the third-party computing platform must be either absolutely secure or information needs to be masked before sharing with the third party. In this paper, we propose an approach to obfuscate the sensitive information and solve the multi-party AC optimal power flow problem in a shared computing platform. The initial obfuscation is separately performed by each party so that sensitive information is masked from the third party and all other participants.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2544179</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.2050-2060 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_1798894264 |
source | IEEE Xplore (Online service) |
subjects | Alternating current Computation Computational modeling Cryptography Electric grid Electric power systems Information dissemination Load flow Mathematical model optimal power flow Optimization Platforms Power flow Privacy privacy and security Security Smart grid |
title | Preserving Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preserving%20Privacy%20of%20AC%20Optimal%20Power%20Flow%20Models%20in%20Multi-Party%20Electric%20Grids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wu,%20Dan&rft.date=2016-07-01&rft.volume=7&rft.issue=4&rft.spage=2050&rft.epage=2060&rft.pages=2050-2060&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2544179&rft_dat=%3Cproquest_cross%3E4096834731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-ed4d20065311b88ebe9944c1844c4c89be5047efd67264b98c168ae8dd8492aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1798894264&rft_id=info:pmid/&rft_ieee_id=7438892&rfr_iscdi=true |