Loading…
Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?
Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure...
Saved in:
Published in: | Human genomics 2013-04, Vol.7 (1), Article 9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Human genomics |
container_volume | 7 |
creator | Voss, Stephen Randal Putta, Srikrishna Walker, John A Smith, Jeramiah J Maki, Nobuyasu Tsonis, Panagiotis A |
description | Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the length of introns and intergenic regions varied. In particular, the distance between hoxd13 and hoxd11 is longer in newt than orthologous regions from vertebrate species with expanded Hox clusters and is predicted to exceed the length of the entire HoxD clusters (hoxd13-hoxd4) of humans, mice, and frogs. Many repetitive DNA sequences were identified for newt Hox clusters, including an enrichment of DNA transposon-like sequences relative to non-coding genomic fragments. Our results suggest that Hox cluster expansion and transposon accumulation are common features of non-mammalian tetrapod vertebrates. |
doi_str_mv | 10.1186/1479-7364-7-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1802505474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4111421421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKeX3ge8riZr2rTeyJgfE4ZeqNfhJE1GR5vUJB3bn_A32zoRr8458Jz3hQehS0quKS3yG8p4mfA0ZwlPyiM0-buP_-2n6CyEDSEpTTmboK83aKAFW2mPl26HVdOHqH3AytkItcVedzrWsd5qfP8yxwOJ9a4bHypsnU2Uq2q7HrB17Wy4xYDjvqsVNGNciL5XsfcaG-d_8BbaFpoaLI46euhchbfaRy09RB3uztGJgSboi985RR-PD--LZbJ6fXpezFeJmmWkTAwpGCkrUqVZakrDIAMzI4rBjOdUDkyZapnTvFBSKp6BYpIxYkDnRkkq83SKrg65nXefvQ5RbFzv7VApaEGGjoxxNlDJgVLeheC1EZ2vW_B7QYkYlYtRqxi1Ci7K9BsAKXba</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802505474</pqid></control><display><type>article</type><title>Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Voss, Stephen Randal ; Putta, Srikrishna ; Walker, John A ; Smith, Jeramiah J ; Maki, Nobuyasu ; Tsonis, Panagiotis A</creator><creatorcontrib>Voss, Stephen Randal ; Putta, Srikrishna ; Walker, John A ; Smith, Jeramiah J ; Maki, Nobuyasu ; Tsonis, Panagiotis A</creatorcontrib><description>Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the length of introns and intergenic regions varied. In particular, the distance between hoxd13 and hoxd11 is longer in newt than orthologous regions from vertebrate species with expanded Hox clusters and is predicted to exceed the length of the entire HoxD clusters (hoxd13-hoxd4) of humans, mice, and frogs. Many repetitive DNA sequences were identified for newt Hox clusters, including an enrichment of DNA transposon-like sequences relative to non-coding genomic fragments. Our results suggest that Hox cluster expansion and transposon accumulation are common features of non-mammalian tetrapod vertebrates.</description><identifier>ISSN: 1479-7364</identifier><identifier>ISSN: 1473-9542</identifier><identifier>EISSN: 1479-7364</identifier><identifier>DOI: 10.1186/1479-7364-7-9</identifier><language>eng</language><publisher>London: BioMed Central</publisher><ispartof>Human genomics, 2013-04, Vol.7 (1), Article 9</ispartof><rights>Copyright BioMed Central 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63</citedby><cites>FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1802505474/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1802505474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Voss, Stephen Randal</creatorcontrib><creatorcontrib>Putta, Srikrishna</creatorcontrib><creatorcontrib>Walker, John A</creatorcontrib><creatorcontrib>Smith, Jeramiah J</creatorcontrib><creatorcontrib>Maki, Nobuyasu</creatorcontrib><creatorcontrib>Tsonis, Panagiotis A</creatorcontrib><title>Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?</title><title>Human genomics</title><description>Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the length of introns and intergenic regions varied. In particular, the distance between hoxd13 and hoxd11 is longer in newt than orthologous regions from vertebrate species with expanded Hox clusters and is predicted to exceed the length of the entire HoxD clusters (hoxd13-hoxd4) of humans, mice, and frogs. Many repetitive DNA sequences were identified for newt Hox clusters, including an enrichment of DNA transposon-like sequences relative to non-coding genomic fragments. Our results suggest that Hox cluster expansion and transposon accumulation are common features of non-mammalian tetrapod vertebrates.</description><issn>1479-7364</issn><issn>1473-9542</issn><issn>1479-7364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkF1LwzAUhoMoOKeX3ge8riZr2rTeyJgfE4ZeqNfhJE1GR5vUJB3bn_A32zoRr8458Jz3hQehS0quKS3yG8p4mfA0ZwlPyiM0-buP_-2n6CyEDSEpTTmboK83aKAFW2mPl26HVdOHqH3AytkItcVedzrWsd5qfP8yxwOJ9a4bHypsnU2Uq2q7HrB17Wy4xYDjvqsVNGNciL5XsfcaG-d_8BbaFpoaLI46euhchbfaRy09RB3uztGJgSboi985RR-PD--LZbJ6fXpezFeJmmWkTAwpGCkrUqVZakrDIAMzI4rBjOdUDkyZapnTvFBSKp6BYpIxYkDnRkkq83SKrg65nXefvQ5RbFzv7VApaEGGjoxxNlDJgVLeheC1EZ2vW_B7QYkYlYtRqxi1Ci7K9BsAKXba</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Voss, Stephen Randal</creator><creator>Putta, Srikrishna</creator><creator>Walker, John A</creator><creator>Smith, Jeramiah J</creator><creator>Maki, Nobuyasu</creator><creator>Tsonis, Panagiotis A</creator><general>BioMed Central</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20130405</creationdate><title>Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?</title><author>Voss, Stephen Randal ; Putta, Srikrishna ; Walker, John A ; Smith, Jeramiah J ; Maki, Nobuyasu ; Tsonis, Panagiotis A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voss, Stephen Randal</creatorcontrib><creatorcontrib>Putta, Srikrishna</creatorcontrib><creatorcontrib>Walker, John A</creatorcontrib><creatorcontrib>Smith, Jeramiah J</creatorcontrib><creatorcontrib>Maki, Nobuyasu</creatorcontrib><creatorcontrib>Tsonis, Panagiotis A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Human genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voss, Stephen Randal</au><au>Putta, Srikrishna</au><au>Walker, John A</au><au>Smith, Jeramiah J</au><au>Maki, Nobuyasu</au><au>Tsonis, Panagiotis A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?</atitle><jtitle>Human genomics</jtitle><date>2013-04-05</date><risdate>2013</risdate><volume>7</volume><issue>1</issue><artnum>9</artnum><issn>1479-7364</issn><issn>1473-9542</issn><eissn>1479-7364</eissn><abstract>Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the length of introns and intergenic regions varied. In particular, the distance between hoxd13 and hoxd11 is longer in newt than orthologous regions from vertebrate species with expanded Hox clusters and is predicted to exceed the length of the entire HoxD clusters (hoxd13-hoxd4) of humans, mice, and frogs. Many repetitive DNA sequences were identified for newt Hox clusters, including an enrichment of DNA transposon-like sequences relative to non-coding genomic fragments. Our results suggest that Hox cluster expansion and transposon accumulation are common features of non-mammalian tetrapod vertebrates.</abstract><cop>London</cop><pub>BioMed Central</pub><doi>10.1186/1479-7364-7-9</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-7364 |
ispartof | Human genomics, 2013-04, Vol.7 (1), Article 9 |
issn | 1479-7364 1473-9542 1479-7364 |
language | eng |
recordid | cdi_proquest_journals_1802505474 |
source | Publicly Available Content Database; PubMed Central |
title | Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salamander%20Hox%20clusters%20contain%20repetitive%20DNA%20and%20expanded%20non-coding%20regions:%20a%20typical%20Hoxstructure%20for%20non-mammalian%20tetrapod%20vertebrates?&rft.jtitle=Human%20genomics&rft.au=Voss,%20Stephen%20Randal&rft.date=2013-04-05&rft.volume=7&rft.issue=1&rft.artnum=9&rft.issn=1479-7364&rft.eissn=1479-7364&rft_id=info:doi/10.1186/1479-7364-7-9&rft_dat=%3Cproquest_cross%3E4111421421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2509-f08409d0d353f9f4a5af20c4a2761bc2593eb6168cbbc75ac4b440fae6fcb1b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802505474&rft_id=info:pmid/&rfr_iscdi=true |