Loading…

Almost sure convergence of vertex degree densities in the vertex splitting model

We study the limiting degree distribution of the vertex splitting model introduced in Ref. [ 3 ] . This is a model of randomly growing ordered trees, where in each time step the tree is separated into two components by splitting a vertex into two, and then inserting an edge between the two new verti...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic models 2016-10, Vol.32 (4), p.575-592
Main Authors: Stefansson, Sigurdur O., Thörnblad, Erik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c370t-b245a35021c3d53b00850b0c987db28256fb5e5a574b189b81412dabe5c443953
container_end_page 592
container_issue 4
container_start_page 575
container_title Stochastic models
container_volume 32
creator Stefansson, Sigurdur O.
Thörnblad, Erik
description We study the limiting degree distribution of the vertex splitting model introduced in Ref. [ 3 ] . This is a model of randomly growing ordered trees, where in each time step the tree is separated into two components by splitting a vertex into two, and then inserting an edge between the two new vertices. Under some assumptions on the parameters, related to the growth of the maximal degree of the tree, we prove that the vertex degree densities converge almost surely to constants which satisfy a system of equations. Using this, we are also able to strengthen and prove some previously non-rigorous results mentioned in the literature.
doi_str_mv 10.1080/15326349.2016.1182029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1802843172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4113441961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b245a35021c3d53b00850b0c987db28256fb5e5a574b189b81412dabe5c443953</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwE5AicaXFz8a5UZWnVAkOwNWyk01wlcTBdij99yRKy5HTjna_Ga0mii4xmmMk0A3mlCwoS-cE4cUcY0EQSY-iybCfMYLZ8V4P0Gl05v0GIcwTISbR67KqrQ-x7xzEmW2-wZXQZBDbIu51gJ84h9IB9KPxJhjwsWni8AmHs28rE4Jpyri2OVTn0UmhKg8X-zmN3h_u31ZPs_XL4_NquZ5lNEFhpgnjinJEcEZzTjVCgiONslQkuSaC8EWhOXDFE6axSLXADJNcaeAZYzTldBpdj7l-C22nZetMrdxOWmXknflYSutK2XWSIop52uNXI946-9WBD3JjO9f0H0osEBGM4oT0FB-pzFnvHRR_sRjJoWt56FoOXct9173vdvSZprCuVlvrqlwGtausK5xqMuMl_T_iF_BahQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802843172</pqid></control><display><type>article</type><title>Almost sure convergence of vertex degree densities in the vertex splitting model</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Stefansson, Sigurdur O. ; Thörnblad, Erik</creator><creatorcontrib>Stefansson, Sigurdur O. ; Thörnblad, Erik</creatorcontrib><description>We study the limiting degree distribution of the vertex splitting model introduced in Ref. [ 3 ] . This is a model of randomly growing ordered trees, where in each time step the tree is separated into two components by splitting a vertex into two, and then inserting an edge between the two new vertices. Under some assumptions on the parameters, related to the growth of the maximal degree of the tree, we prove that the vertex degree densities converge almost surely to constants which satisfy a system of equations. Using this, we are also able to strengthen and prove some previously non-rigorous results mentioned in the literature.</description><identifier>ISSN: 1532-6349</identifier><identifier>ISSN: 1532-4214</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326349.2016.1182029</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>05C05 ; 05C80 ; 05C80; 05C05 ; Almost sure convergence ; Convergence ; degree densities ; random trees ; vertex splitting</subject><ispartof>Stochastic models, 2016-10, Vol.32 (4), p.575-592</ispartof><rights>2016 Taylor &amp; Francis 2016</rights><rights>2016 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-b245a35021c3d53b00850b0c987db28256fb5e5a574b189b81412dabe5c443953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-303159$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefansson, Sigurdur O.</creatorcontrib><creatorcontrib>Thörnblad, Erik</creatorcontrib><title>Almost sure convergence of vertex degree densities in the vertex splitting model</title><title>Stochastic models</title><description>We study the limiting degree distribution of the vertex splitting model introduced in Ref. [ 3 ] . This is a model of randomly growing ordered trees, where in each time step the tree is separated into two components by splitting a vertex into two, and then inserting an edge between the two new vertices. Under some assumptions on the parameters, related to the growth of the maximal degree of the tree, we prove that the vertex degree densities converge almost surely to constants which satisfy a system of equations. Using this, we are also able to strengthen and prove some previously non-rigorous results mentioned in the literature.</description><subject>05C05</subject><subject>05C80</subject><subject>05C80; 05C05</subject><subject>Almost sure convergence</subject><subject>Convergence</subject><subject>degree densities</subject><subject>random trees</subject><subject>vertex splitting</subject><issn>1532-6349</issn><issn>1532-4214</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwE5AicaXFz8a5UZWnVAkOwNWyk01wlcTBdij99yRKy5HTjna_Ga0mii4xmmMk0A3mlCwoS-cE4cUcY0EQSY-iybCfMYLZ8V4P0Gl05v0GIcwTISbR67KqrQ-x7xzEmW2-wZXQZBDbIu51gJ84h9IB9KPxJhjwsWni8AmHs28rE4Jpyri2OVTn0UmhKg8X-zmN3h_u31ZPs_XL4_NquZ5lNEFhpgnjinJEcEZzTjVCgiONslQkuSaC8EWhOXDFE6axSLXADJNcaeAZYzTldBpdj7l-C22nZetMrdxOWmXknflYSutK2XWSIop52uNXI946-9WBD3JjO9f0H0osEBGM4oT0FB-pzFnvHRR_sRjJoWt56FoOXct9173vdvSZprCuVlvrqlwGtausK5xqMuMl_T_iF_BahQU</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Stefansson, Sigurdur O.</creator><creator>Thörnblad, Erik</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20161001</creationdate><title>Almost sure convergence of vertex degree densities in the vertex splitting model</title><author>Stefansson, Sigurdur O. ; Thörnblad, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b245a35021c3d53b00850b0c987db28256fb5e5a574b189b81412dabe5c443953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>05C05</topic><topic>05C80</topic><topic>05C80; 05C05</topic><topic>Almost sure convergence</topic><topic>Convergence</topic><topic>degree densities</topic><topic>random trees</topic><topic>vertex splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefansson, Sigurdur O.</creatorcontrib><creatorcontrib>Thörnblad, Erik</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefansson, Sigurdur O.</au><au>Thörnblad, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost sure convergence of vertex degree densities in the vertex splitting model</atitle><jtitle>Stochastic models</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>32</volume><issue>4</issue><spage>575</spage><epage>592</epage><pages>575-592</pages><issn>1532-6349</issn><issn>1532-4214</issn><eissn>1532-4214</eissn><abstract>We study the limiting degree distribution of the vertex splitting model introduced in Ref. [ 3 ] . This is a model of randomly growing ordered trees, where in each time step the tree is separated into two components by splitting a vertex into two, and then inserting an edge between the two new vertices. Under some assumptions on the parameters, related to the growth of the maximal degree of the tree, we prove that the vertex degree densities converge almost surely to constants which satisfy a system of equations. Using this, we are also able to strengthen and prove some previously non-rigorous results mentioned in the literature.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15326349.2016.1182029</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-6349
ispartof Stochastic models, 2016-10, Vol.32 (4), p.575-592
issn 1532-6349
1532-4214
1532-4214
language eng
recordid cdi_proquest_journals_1802843172
source EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection
subjects 05C05
05C80
05C80
05C05
Almost sure convergence
Convergence
degree densities
random trees
vertex splitting
title Almost sure convergence of vertex degree densities in the vertex splitting model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20sure%20convergence%20of%20vertex%20degree%20densities%20in%20the%20vertex%20splitting%20model&rft.jtitle=Stochastic%20models&rft.au=Stefansson,%20Sigurdur%20O.&rft.date=2016-10-01&rft.volume=32&rft.issue=4&rft.spage=575&rft.epage=592&rft.pages=575-592&rft.issn=1532-6349&rft.eissn=1532-4214&rft_id=info:doi/10.1080/15326349.2016.1182029&rft_dat=%3Cproquest_cross%3E4113441961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-b245a35021c3d53b00850b0c987db28256fb5e5a574b189b81412dabe5c443953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802843172&rft_id=info:pmid/&rfr_iscdi=true