Loading…

Jordan derivations of finitary incidence rings

Let P be a preordered set, R a ring and FI(P, R) the finitary incidence ring of P over R. We find a criterion for all the Jordan derivations of FI(P, R) to be derivations. In particular, we prove that each Jordan derivation of the ring of row-finite -matrices over R is a derivation, if .

Saved in:
Bibliographic Details
Published in:Linear & multilinear algebra 2016-10, Vol.64 (10), p.2104-2118
Main Author: Khrypchenko, Mykola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923
cites cdi_FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923
container_end_page 2118
container_issue 10
container_start_page 2104
container_title Linear & multilinear algebra
container_volume 64
creator Khrypchenko, Mykola
description Let P be a preordered set, R a ring and FI(P, R) the finitary incidence ring of P over R. We find a criterion for all the Jordan derivations of FI(P, R) to be derivations. In particular, we prove that each Jordan derivation of the ring of row-finite -matrices over R is a derivation, if .
doi_str_mv 10.1080/03081087.2016.1139036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1803247513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835627000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXXyWazSW5K8ZOCFz2HkA9J2SY12Sr992ZpvXjwNDPwzDDvg9AlhgYDhxsgwEvDmhZw32BMBJD-CM0w7UlNy3iMZhNTT9ApOst5BQAdJnSGmpeYjAqVscl_qdHHkKvoKueDH1XaVT5ob2zQtko-fORzdOLUkO3Foc7R-8P92-KpXr4-Pi_ulrUmDI81ccKA4o5ZpiwX0FEsqAYMmmpuOSHUMmG4w9BrYwnjPceKGUE7A8SKlszR9f7uJsXPrc2jXPus7TCoYOM2S8wJ7VtWYhT06g-6itsUyneFAtJ2rCgoFN1TOsWck3Vyk_y6JJQY5GRR_lqUk0V5sFj2bvd7PriY1uo7psHIUe2GmFxSxU6W5P8TPzpTdmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803247513</pqid></control><display><type>article</type><title>Jordan derivations of finitary incidence rings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khrypchenko, Mykola</creator><creatorcontrib>Khrypchenko, Mykola</creatorcontrib><description>Let P be a preordered set, R a ring and FI(P, R) the finitary incidence ring of P over R. We find a criterion for all the Jordan derivations of FI(P, R) to be derivations. In particular, we prove that each Jordan derivation of the ring of row-finite -matrices over R is a derivation, if .</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2016.1139036</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algebra ; Criteria ; Derivation ; finitary incidence ring ; Incidence ; Jordan derivation ; Primary: 16W25 ; Secondary: 16S60</subject><ispartof>Linear &amp; multilinear algebra, 2016-10, Vol.64 (10), p.2104-2118</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923</citedby><cites>FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923</cites><orcidid>0000-0002-5817-3022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Khrypchenko, Mykola</creatorcontrib><title>Jordan derivations of finitary incidence rings</title><title>Linear &amp; multilinear algebra</title><description>Let P be a preordered set, R a ring and FI(P, R) the finitary incidence ring of P over R. We find a criterion for all the Jordan derivations of FI(P, R) to be derivations. In particular, we prove that each Jordan derivation of the ring of row-finite -matrices over R is a derivation, if .</description><subject>Algebra</subject><subject>Criteria</subject><subject>Derivation</subject><subject>finitary incidence ring</subject><subject>Incidence</subject><subject>Jordan derivation</subject><subject>Primary: 16W25</subject><subject>Secondary: 16S60</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXXyWazSW5K8ZOCFz2HkA9J2SY12Sr992ZpvXjwNDPwzDDvg9AlhgYDhxsgwEvDmhZw32BMBJD-CM0w7UlNy3iMZhNTT9ApOst5BQAdJnSGmpeYjAqVscl_qdHHkKvoKueDH1XaVT5ob2zQtko-fORzdOLUkO3Foc7R-8P92-KpXr4-Pi_ulrUmDI81ccKA4o5ZpiwX0FEsqAYMmmpuOSHUMmG4w9BrYwnjPceKGUE7A8SKlszR9f7uJsXPrc2jXPus7TCoYOM2S8wJ7VtWYhT06g-6itsUyneFAtJ2rCgoFN1TOsWck3Vyk_y6JJQY5GRR_lqUk0V5sFj2bvd7PriY1uo7psHIUe2GmFxSxU6W5P8TPzpTdmE</recordid><startdate>20161002</startdate><enddate>20161002</enddate><creator>Khrypchenko, Mykola</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5817-3022</orcidid></search><sort><creationdate>20161002</creationdate><title>Jordan derivations of finitary incidence rings</title><author>Khrypchenko, Mykola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Criteria</topic><topic>Derivation</topic><topic>finitary incidence ring</topic><topic>Incidence</topic><topic>Jordan derivation</topic><topic>Primary: 16W25</topic><topic>Secondary: 16S60</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khrypchenko, Mykola</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear &amp; multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khrypchenko, Mykola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jordan derivations of finitary incidence rings</atitle><jtitle>Linear &amp; multilinear algebra</jtitle><date>2016-10-02</date><risdate>2016</risdate><volume>64</volume><issue>10</issue><spage>2104</spage><epage>2118</epage><pages>2104-2118</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>Let P be a preordered set, R a ring and FI(P, R) the finitary incidence ring of P over R. We find a criterion for all the Jordan derivations of FI(P, R) to be derivations. In particular, we prove that each Jordan derivation of the ring of row-finite -matrices over R is a derivation, if .</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03081087.2016.1139036</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5817-3022</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-1087
ispartof Linear & multilinear algebra, 2016-10, Vol.64 (10), p.2104-2118
issn 0308-1087
1563-5139
language eng
recordid cdi_proquest_journals_1803247513
source Taylor and Francis Science and Technology Collection
subjects Algebra
Criteria
Derivation
finitary incidence ring
Incidence
Jordan derivation
Primary: 16W25
Secondary: 16S60
title Jordan derivations of finitary incidence rings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jordan%20derivations%20of%20finitary%20incidence%20rings&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Khrypchenko,%20Mykola&rft.date=2016-10-02&rft.volume=64&rft.issue=10&rft.spage=2104&rft.epage=2118&rft.pages=2104-2118&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2016.1139036&rft_dat=%3Cproquest_cross%3E1835627000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-3f9d0a8f7e7ae89045195c010c5c8e8335e79d8f106cde378681a7d954d03e923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803247513&rft_id=info:pmid/&rfr_iscdi=true