Loading…

Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method

In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control vari...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2016-07, Vol.18 (4), p.1524-1536
Main Authors: Idiri, Ghania, Djennoune, Saïd, Bettayeb, Maamar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273
cites cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273
container_end_page 1536
container_issue 4
container_start_page 1524
container_title Asian journal of control
container_volume 18
creator Idiri, Ghania
Djennoune, Saïd
Bettayeb, Maamar
description In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.
doi_str_mv 10.1002/asjc.1247
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1803679382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4116534521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhejiYhe-A-WeOXFoB9rt12SRVCCQgTiZVO2MyluFNuh4K-3y4h33vT0JM9zkvf1vFuMehgh0pd2k_UwCaMzr4MTGgYcJfTc_RnHQcwJu_SurN0gxDGNWceDuS6_1PbdH6oD5O7dytJfqAr8oZFZrXSzT3e1qtxM9bY2uvRnRq9KqKy_tI1ar8GfSSMrqI3KWlr9yEb2n6Fe6_zauyhkaeHmNLvecviwSB-DyXT0lA4mQUYpi4ICSxYCowhJl0BmlBCEJcgcSw5Jlhc84YWMc8ShIAlbZREBGoPLHeaYkYh2vbv27s7ozz3YWmz03rgIVuAYUR4lNCaOum-pzGhrDRRiZ1w-cxQYiaZF0bQomhYd22_Zb1XC8X9QDObj9GQEraFsDYc_Q5oPwSMaMfH2MhJk-JqMWbwQlP4ClpSDhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803679382</pqid></control><display><type>article</type><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</creator><creatorcontrib>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</creatorcontrib><description>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.1247</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Alienor method ; Control systems ; Fractional optimal control ; fractional variational method ; global optimization ; Nonlinear programming ; Optimization algorithms ; Ordinary differential equations ; parametric optimization</subject><ispartof>Asian journal of control, 2016-07, Vol.18 (4), p.1524-1536</ispartof><rights>2015 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2016 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</citedby><cites>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Idiri, Ghania</creatorcontrib><creatorcontrib>Djennoune, Saïd</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><title>Asian journal of control</title><addtitle>Asian Journal of Control</addtitle><description>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</description><subject>Alienor method</subject><subject>Control systems</subject><subject>Fractional optimal control</subject><subject>fractional variational method</subject><subject>global optimization</subject><subject>Nonlinear programming</subject><subject>Optimization algorithms</subject><subject>Ordinary differential equations</subject><subject>parametric optimization</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhejiYhe-A-WeOXFoB9rt12SRVCCQgTiZVO2MyluFNuh4K-3y4h33vT0JM9zkvf1vFuMehgh0pd2k_UwCaMzr4MTGgYcJfTc_RnHQcwJu_SurN0gxDGNWceDuS6_1PbdH6oD5O7dytJfqAr8oZFZrXSzT3e1qtxM9bY2uvRnRq9KqKy_tI1ar8GfSSMrqI3KWlr9yEb2n6Fe6_zauyhkaeHmNLvecviwSB-DyXT0lA4mQUYpi4ICSxYCowhJl0BmlBCEJcgcSw5Jlhc84YWMc8ShIAlbZREBGoPLHeaYkYh2vbv27s7ozz3YWmz03rgIVuAYUR4lNCaOum-pzGhrDRRiZ1w-cxQYiaZF0bQomhYd22_Zb1XC8X9QDObj9GQEraFsDYc_Q5oPwSMaMfH2MhJk-JqMWbwQlP4ClpSDhQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Idiri, Ghania</creator><creator>Djennoune, Saïd</creator><creator>Bettayeb, Maamar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201607</creationdate><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><author>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alienor method</topic><topic>Control systems</topic><topic>Fractional optimal control</topic><topic>fractional variational method</topic><topic>global optimization</topic><topic>Nonlinear programming</topic><topic>Optimization algorithms</topic><topic>Ordinary differential equations</topic><topic>parametric optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idiri, Ghania</creatorcontrib><creatorcontrib>Djennoune, Saïd</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idiri, Ghania</au><au>Djennoune, Saïd</au><au>Bettayeb, Maamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian Journal of Control</addtitle><date>2016-07</date><risdate>2016</risdate><volume>18</volume><issue>4</issue><spage>1524</spage><epage>1536</epage><pages>1524-1536</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.1247</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2016-07, Vol.18 (4), p.1524-1536
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_1803679382
source Wiley-Blackwell Read & Publish Collection
subjects Alienor method
Control systems
Fractional optimal control
fractional variational method
global optimization
Nonlinear programming
Optimization algorithms
Ordinary differential equations
parametric optimization
title Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Fixed%20Final%20Time%20Fractional%20Optimal%20Control%20Problems%20Using%20the%20Parametric%20Optimization%20Method&rft.jtitle=Asian%20journal%20of%20control&rft.au=Idiri,%20Ghania&rft.date=2016-07&rft.volume=18&rft.issue=4&rft.spage=1524&rft.epage=1536&rft.pages=1524-1536&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.1247&rft_dat=%3Cproquest_cross%3E4116534521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803679382&rft_id=info:pmid/&rfr_iscdi=true