Loading…
Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method
In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control vari...
Saved in:
Published in: | Asian journal of control 2016-07, Vol.18 (4), p.1524-1536 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273 |
---|---|
cites | cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273 |
container_end_page | 1536 |
container_issue | 4 |
container_start_page | 1524 |
container_title | Asian journal of control |
container_volume | 18 |
creator | Idiri, Ghania Djennoune, Saïd Bettayeb, Maamar |
description | In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature. |
doi_str_mv | 10.1002/asjc.1247 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1803679382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4116534521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhejiYhe-A-WeOXFoB9rt12SRVCCQgTiZVO2MyluFNuh4K-3y4h33vT0JM9zkvf1vFuMehgh0pd2k_UwCaMzr4MTGgYcJfTc_RnHQcwJu_SurN0gxDGNWceDuS6_1PbdH6oD5O7dytJfqAr8oZFZrXSzT3e1qtxM9bY2uvRnRq9KqKy_tI1ar8GfSSMrqI3KWlr9yEb2n6Fe6_zauyhkaeHmNLvecviwSB-DyXT0lA4mQUYpi4ICSxYCowhJl0BmlBCEJcgcSw5Jlhc84YWMc8ShIAlbZREBGoPLHeaYkYh2vbv27s7ozz3YWmz03rgIVuAYUR4lNCaOum-pzGhrDRRiZ1w-cxQYiaZF0bQomhYd22_Zb1XC8X9QDObj9GQEraFsDYc_Q5oPwSMaMfH2MhJk-JqMWbwQlP4ClpSDhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803679382</pqid></control><display><type>article</type><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</creator><creatorcontrib>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</creatorcontrib><description>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.1247</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Alienor method ; Control systems ; Fractional optimal control ; fractional variational method ; global optimization ; Nonlinear programming ; Optimization algorithms ; Ordinary differential equations ; parametric optimization</subject><ispartof>Asian journal of control, 2016-07, Vol.18 (4), p.1524-1536</ispartof><rights>2015 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><rights>2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</citedby><cites>FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Idiri, Ghania</creatorcontrib><creatorcontrib>Djennoune, Saïd</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><title>Asian journal of control</title><addtitle>Asian Journal of Control</addtitle><description>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</description><subject>Alienor method</subject><subject>Control systems</subject><subject>Fractional optimal control</subject><subject>fractional variational method</subject><subject>global optimization</subject><subject>Nonlinear programming</subject><subject>Optimization algorithms</subject><subject>Ordinary differential equations</subject><subject>parametric optimization</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhejiYhe-A-WeOXFoB9rt12SRVCCQgTiZVO2MyluFNuh4K-3y4h33vT0JM9zkvf1vFuMehgh0pd2k_UwCaMzr4MTGgYcJfTc_RnHQcwJu_SurN0gxDGNWceDuS6_1PbdH6oD5O7dytJfqAr8oZFZrXSzT3e1qtxM9bY2uvRnRq9KqKy_tI1ar8GfSSMrqI3KWlr9yEb2n6Fe6_zauyhkaeHmNLvecviwSB-DyXT0lA4mQUYpi4ICSxYCowhJl0BmlBCEJcgcSw5Jlhc84YWMc8ShIAlbZREBGoPLHeaYkYh2vbv27s7ozz3YWmz03rgIVuAYUR4lNCaOum-pzGhrDRRiZ1w-cxQYiaZF0bQomhYd22_Zb1XC8X9QDObj9GQEraFsDYc_Q5oPwSMaMfH2MhJk-JqMWbwQlP4ClpSDhQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Idiri, Ghania</creator><creator>Djennoune, Saïd</creator><creator>Bettayeb, Maamar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201607</creationdate><title>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</title><author>Idiri, Ghania ; Djennoune, Saïd ; Bettayeb, Maamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alienor method</topic><topic>Control systems</topic><topic>Fractional optimal control</topic><topic>fractional variational method</topic><topic>global optimization</topic><topic>Nonlinear programming</topic><topic>Optimization algorithms</topic><topic>Ordinary differential equations</topic><topic>parametric optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idiri, Ghania</creatorcontrib><creatorcontrib>Djennoune, Saïd</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idiri, Ghania</au><au>Djennoune, Saïd</au><au>Bettayeb, Maamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian Journal of Control</addtitle><date>2016-07</date><risdate>2016</risdate><volume>18</volume><issue>4</issue><spage>1524</spage><epage>1536</epage><pages>1524-1536</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this paper, the parametric optimization method is used to find optimal control laws for fractional systems. The proposed approach is based on the use for the fractional variational iteration method to convert the original optimal control problem into a nonlinear optimization one. The control variable is parameterized by unknown parameters to be determined, then its expression is substituted into the system state‐space model. The resulting fractional ordinary differential equations are solved by the fractional variational iteration method, which provides an approximate analytical expression of the closed‐form solution of the state equations. This solution is a function of time and the unknown parameters of the control law. By substituting this solution into the performance index, the original fractional optimal control problem reduces to a nonlinear optimization problem where the unknown parameters, introduced in the parameterization procedure, are the optimization variables. To solve the nonlinear optimization problem and find the optimal values of the control parameters, the Alienor global optimization method is used to achieve the global optimal values of the control law parameters. The proposed approach is illustrated by two application examples taken from the literature.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.1247</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2016-07, Vol.18 (4), p.1524-1536 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_1803679382 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alienor method Control systems Fractional optimal control fractional variational method global optimization Nonlinear programming Optimization algorithms Ordinary differential equations parametric optimization |
title | Solving Fixed Final Time Fractional Optimal Control Problems Using the Parametric Optimization Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Fixed%20Final%20Time%20Fractional%20Optimal%20Control%20Problems%20Using%20the%20Parametric%20Optimization%20Method&rft.jtitle=Asian%20journal%20of%20control&rft.au=Idiri,%20Ghania&rft.date=2016-07&rft.volume=18&rft.issue=4&rft.spage=1524&rft.epage=1536&rft.pages=1524-1536&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.1247&rft_dat=%3Cproquest_cross%3E4116534521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3357-f1a54e5300a247ac32201aead1a6e9cdf696fa8d06ef295bc72e38e0024d15273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803679382&rft_id=info:pmid/&rfr_iscdi=true |