Loading…

The Forward Procedure for HSMMs based on Expected Duration

For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation fo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2016-08, Vol.23 (8), p.1116-1120
Main Authors: Lemeire, Jan, Cartella, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683
container_end_page 1120
container_issue 8
container_start_page 1116
container_title IEEE signal processing letters
container_volume 23
creator Lemeire, Jan
Cartella, Francesco
description For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.
doi_str_mv 10.1109/LSP.2016.2583483
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1804186026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7497560</ieee_id><sourcerecordid>1835585030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9bJ5vP9Sa1VaHFQus5ZJMsbmk3NdlF_femtHjwNO_heYeZB6FrDCOMobyfLRejAjAfFUwSKskJGmDGZF4Qjk9TBgF5WYI8RxcxrgFAYskG6GH14bKpD1862GwRvHG2Dy6rfchelvN5zCodnc18m02-d850KT_1QXeNby_RWa030V0d5xC9Tyer8Us-e3t-HT_OclMI0eUVxxKcxaXD3FQgMGcFocZYC1TQUpc1NZVkmhomcF1UVWmtoACCOUskl2SI7g57d8F_9i52attE4zYb3TrfR4UlSY8yIJDQ23_o2vehTdclCiiWHAqeKDhQJvgYg6vVLjRbHX4UBrWXqZJMtZepjjJT5eZQaZxzf3g6XzAO5Be1sm1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804186026</pqid></control><display><type>article</type><title>The Forward Procedure for HSMMs based on Expected Duration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lemeire, Jan ; Cartella, Francesco</creator><creatorcontrib>Lemeire, Jan ; Cartella, Francesco</creatorcontrib><description>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2583483</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Approximation error ; Dynamic models ; Error analysis ; Forward procedure ; Hidden Markov models ; hidden semi Markov models (HSMMs) ; Indexes ; Informatics ; Mathematical analysis ; Mathematical model ; Mathematical models ; Permissible error ; semimarkov models ; Signal processing ; Tracking ; Uncertainty</subject><ispartof>IEEE signal processing letters, 2016-08, Vol.23 (8), p.1116-1120</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</cites><orcidid>0000-0002-2106-448X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7497560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lemeire, Jan</creatorcontrib><creatorcontrib>Cartella, Francesco</creatorcontrib><title>The Forward Procedure for HSMMs based on Expected Duration</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</description><subject>Approximation</subject><subject>Approximation error</subject><subject>Dynamic models</subject><subject>Error analysis</subject><subject>Forward procedure</subject><subject>Hidden Markov models</subject><subject>hidden semi Markov models (HSMMs)</subject><subject>Indexes</subject><subject>Informatics</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>semimarkov models</subject><subject>Signal processing</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9bJ5vP9Sa1VaHFQus5ZJMsbmk3NdlF_femtHjwNO_heYeZB6FrDCOMobyfLRejAjAfFUwSKskJGmDGZF4Qjk9TBgF5WYI8RxcxrgFAYskG6GH14bKpD1862GwRvHG2Dy6rfchelvN5zCodnc18m02-d850KT_1QXeNby_RWa030V0d5xC9Tyer8Us-e3t-HT_OclMI0eUVxxKcxaXD3FQgMGcFocZYC1TQUpc1NZVkmhomcF1UVWmtoACCOUskl2SI7g57d8F_9i52attE4zYb3TrfR4UlSY8yIJDQ23_o2vehTdclCiiWHAqeKDhQJvgYg6vVLjRbHX4UBrWXqZJMtZepjjJT5eZQaZxzf3g6XzAO5Be1sm1w</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Lemeire, Jan</creator><creator>Cartella, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-2106-448X</orcidid></search><sort><creationdate>201608</creationdate><title>The Forward Procedure for HSMMs based on Expected Duration</title><author>Lemeire, Jan ; Cartella, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Approximation error</topic><topic>Dynamic models</topic><topic>Error analysis</topic><topic>Forward procedure</topic><topic>Hidden Markov models</topic><topic>hidden semi Markov models (HSMMs)</topic><topic>Indexes</topic><topic>Informatics</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>semimarkov models</topic><topic>Signal processing</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemeire, Jan</creatorcontrib><creatorcontrib>Cartella, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemeire, Jan</au><au>Cartella, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Forward Procedure for HSMMs based on Expected Duration</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-08</date><risdate>2016</risdate><volume>23</volume><issue>8</issue><spage>1116</spage><epage>1120</epage><pages>1116-1120</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2016.2583483</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2106-448X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2016-08, Vol.23 (8), p.1116-1120
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_1804186026
source IEEE Electronic Library (IEL) Journals
subjects Approximation
Approximation error
Dynamic models
Error analysis
Forward procedure
Hidden Markov models
hidden semi Markov models (HSMMs)
Indexes
Informatics
Mathematical analysis
Mathematical model
Mathematical models
Permissible error
semimarkov models
Signal processing
Tracking
Uncertainty
title The Forward Procedure for HSMMs based on Expected Duration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Forward%20Procedure%20for%20HSMMs%20based%20on%20Expected%20Duration&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lemeire,%20Jan&rft.date=2016-08&rft.volume=23&rft.issue=8&rft.spage=1116&rft.epage=1120&rft.pages=1116-1120&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2583483&rft_dat=%3Cproquest_ieee_%3E1835585030%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1804186026&rft_id=info:pmid/&rft_ieee_id=7497560&rfr_iscdi=true