Loading…
The Forward Procedure for HSMMs based on Expected Duration
For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation fo...
Saved in:
Published in: | IEEE signal processing letters 2016-08, Vol.23 (8), p.1116-1120 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683 |
container_end_page | 1120 |
container_issue | 8 |
container_start_page | 1116 |
container_title | IEEE signal processing letters |
container_volume | 23 |
creator | Lemeire, Jan Cartella, Francesco |
description | For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable. |
doi_str_mv | 10.1109/LSP.2016.2583483 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1804186026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7497560</ieee_id><sourcerecordid>1835585030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9bJ5vP9Sa1VaHFQus5ZJMsbmk3NdlF_femtHjwNO_heYeZB6FrDCOMobyfLRejAjAfFUwSKskJGmDGZF4Qjk9TBgF5WYI8RxcxrgFAYskG6GH14bKpD1862GwRvHG2Dy6rfchelvN5zCodnc18m02-d850KT_1QXeNby_RWa030V0d5xC9Tyer8Us-e3t-HT_OclMI0eUVxxKcxaXD3FQgMGcFocZYC1TQUpc1NZVkmhomcF1UVWmtoACCOUskl2SI7g57d8F_9i52attE4zYb3TrfR4UlSY8yIJDQ23_o2vehTdclCiiWHAqeKDhQJvgYg6vVLjRbHX4UBrWXqZJMtZepjjJT5eZQaZxzf3g6XzAO5Be1sm1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804186026</pqid></control><display><type>article</type><title>The Forward Procedure for HSMMs based on Expected Duration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lemeire, Jan ; Cartella, Francesco</creator><creatorcontrib>Lemeire, Jan ; Cartella, Francesco</creatorcontrib><description>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2583483</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Approximation error ; Dynamic models ; Error analysis ; Forward procedure ; Hidden Markov models ; hidden semi Markov models (HSMMs) ; Indexes ; Informatics ; Mathematical analysis ; Mathematical model ; Mathematical models ; Permissible error ; semimarkov models ; Signal processing ; Tracking ; Uncertainty</subject><ispartof>IEEE signal processing letters, 2016-08, Vol.23 (8), p.1116-1120</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</cites><orcidid>0000-0002-2106-448X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7497560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lemeire, Jan</creatorcontrib><creatorcontrib>Cartella, Francesco</creatorcontrib><title>The Forward Procedure for HSMMs based on Expected Duration</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</description><subject>Approximation</subject><subject>Approximation error</subject><subject>Dynamic models</subject><subject>Error analysis</subject><subject>Forward procedure</subject><subject>Hidden Markov models</subject><subject>hidden semi Markov models (HSMMs)</subject><subject>Indexes</subject><subject>Informatics</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>semimarkov models</subject><subject>Signal processing</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9bJ5vP9Sa1VaHFQus5ZJMsbmk3NdlF_femtHjwNO_heYeZB6FrDCOMobyfLRejAjAfFUwSKskJGmDGZF4Qjk9TBgF5WYI8RxcxrgFAYskG6GH14bKpD1862GwRvHG2Dy6rfchelvN5zCodnc18m02-d850KT_1QXeNby_RWa030V0d5xC9Tyer8Us-e3t-HT_OclMI0eUVxxKcxaXD3FQgMGcFocZYC1TQUpc1NZVkmhomcF1UVWmtoACCOUskl2SI7g57d8F_9i52attE4zYb3TrfR4UlSY8yIJDQ23_o2vehTdclCiiWHAqeKDhQJvgYg6vVLjRbHX4UBrWXqZJMtZepjjJT5eZQaZxzf3g6XzAO5Be1sm1w</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Lemeire, Jan</creator><creator>Cartella, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-2106-448X</orcidid></search><sort><creationdate>201608</creationdate><title>The Forward Procedure for HSMMs based on Expected Duration</title><author>Lemeire, Jan ; Cartella, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Approximation error</topic><topic>Dynamic models</topic><topic>Error analysis</topic><topic>Forward procedure</topic><topic>Hidden Markov models</topic><topic>hidden semi Markov models (HSMMs)</topic><topic>Indexes</topic><topic>Informatics</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>semimarkov models</topic><topic>Signal processing</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemeire, Jan</creatorcontrib><creatorcontrib>Cartella, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemeire, Jan</au><au>Cartella, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Forward Procedure for HSMMs based on Expected Duration</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-08</date><risdate>2016</risdate><volume>23</volume><issue>8</issue><spage>1116</spage><epage>1120</epage><pages>1116-1120</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>For dynamic models, the forward procedure is used to calculate the probability of an observation sequence for a given model. For hidden semiMarkov models (HSMMs), the calculation can be approximated by keeping a track of the expected state duration instead of the distribution. The update equation for the expected duration proposed by Azimi et al.[1] is, however, wrong. The experiments presented by Azimi et al.[1] did not reveal the error, since for the presented cases, the state duration does not play a role in the probabilities. We propose a better equation for updating the expected duration. It nevertheless remains an approximation for calculating the probability of observation sequences. We analyze the assumptions to show under which conditions the approximation errors become important. Experiments show that the approximation is only reasonable for left-to-right HSMMs. As we focus on a specific sub class of HSMMs, we derive specialized equations from the general form for the exact calculation of the forward variable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2016.2583483</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2106-448X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2016-08, Vol.23 (8), p.1116-1120 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_1804186026 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation Approximation error Dynamic models Error analysis Forward procedure Hidden Markov models hidden semi Markov models (HSMMs) Indexes Informatics Mathematical analysis Mathematical model Mathematical models Permissible error semimarkov models Signal processing Tracking Uncertainty |
title | The Forward Procedure for HSMMs based on Expected Duration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Forward%20Procedure%20for%20HSMMs%20based%20on%20Expected%20Duration&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lemeire,%20Jan&rft.date=2016-08&rft.volume=23&rft.issue=8&rft.spage=1116&rft.epage=1120&rft.pages=1116-1120&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2583483&rft_dat=%3Cproquest_ieee_%3E1835585030%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-b6180ed19e16cb07165234ccdd04749a9f4cb85a4c571f2bb9dd740075ed38683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1804186026&rft_id=info:pmid/&rft_ieee_id=7497560&rfr_iscdi=true |