Loading…

Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things

Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2016-08, Vol.3 (4), p.581-589
Main Authors: Li, Zhiyuan, Chen, Rulong, Liu, Lu, Min, Geyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793
cites cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793
container_end_page 589
container_issue 4
container_start_page 581
container_title IEEE internet of things journal
container_volume 3
creator Li, Zhiyuan
Chen, Rulong
Liu, Lu
Min, Geyong
description Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.
doi_str_mv 10.1109/JIOT.2015.2451138
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1807917273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7140727</ieee_id><sourcerecordid>1835643785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoWGp_gPgS8MWXrbnt7VFbL5VKi63PS5qdrSm7SU22Yv-9WVpEfJqB-c4wcw5Cl5QMKSX57ctkthwyQuMhEzGlPDtBPcZZGokkYad_-nM08H5DCAmymOZJD32P90Y2WuE38HbnFOCx9sp-gdvje-mhxNbguYMKHJgwlabEr2HcgGnxXLYtOIMXutG1dLrd48o6PJVuDdFCyRrwwiotazwxHQgtthVefmiz9hforJK1h8Gx9tH748Ny9BxNZ0-T0d00UoLnbSTCoUwoxTIoKQdRpcDinFBeJUomQhBWQhUzUCXnkgsmElYl2WpFGVBSpjnvo5vD3q2znzvwbdGEB6GupQG78wXNeJwInmZxQK__oZtgiQnXBYqkOU1ZygNFD5Ry1vvgTLF1upFuX1BSdHEUXRxFF0dxjCNorg4aDQC_fEoF6Vb-AOFwha0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807917273</pqid></control><display><type>article</type><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</creator><creatorcontrib>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</creatorcontrib><description>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2015.2451138</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cartesian coordinate system ; Communities ; Cosine similarity ; Delay ; Delays ; Economic models ; Efficiency ; Internet ; Internet of Things ; Mobile communication ; movement pattern ; Peer-to-peer computing ; preference ; resource discovery ; Routing ; Searching ; Silicon dioxide ; Similarity ; Simulation ; social Internet of Things (SIoT) ; State of the art ; Trajectory</subject><ispartof>IEEE internet of things journal, 2016-08, Vol.3 (4), p.581-589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</citedby><cites>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7140727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Rulong</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</description><subject>Cartesian coordinate system</subject><subject>Communities</subject><subject>Cosine similarity</subject><subject>Delay</subject><subject>Delays</subject><subject>Economic models</subject><subject>Efficiency</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Mobile communication</subject><subject>movement pattern</subject><subject>Peer-to-peer computing</subject><subject>preference</subject><subject>resource discovery</subject><subject>Routing</subject><subject>Searching</subject><subject>Silicon dioxide</subject><subject>Similarity</subject><subject>Simulation</subject><subject>social Internet of Things (SIoT)</subject><subject>State of the art</subject><subject>Trajectory</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLAzEQhYMoWGp_gPgS8MWXrbnt7VFbL5VKi63PS5qdrSm7SU22Yv-9WVpEfJqB-c4wcw5Cl5QMKSX57ctkthwyQuMhEzGlPDtBPcZZGokkYad_-nM08H5DCAmymOZJD32P90Y2WuE38HbnFOCx9sp-gdvje-mhxNbguYMKHJgwlabEr2HcgGnxXLYtOIMXutG1dLrd48o6PJVuDdFCyRrwwiotazwxHQgtthVefmiz9hforJK1h8Gx9tH748Ny9BxNZ0-T0d00UoLnbSTCoUwoxTIoKQdRpcDinFBeJUomQhBWQhUzUCXnkgsmElYl2WpFGVBSpjnvo5vD3q2znzvwbdGEB6GupQG78wXNeJwInmZxQK__oZtgiQnXBYqkOU1ZygNFD5Ry1vvgTLF1upFuX1BSdHEUXRxFF0dxjCNorg4aDQC_fEoF6Vb-AOFwha0</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Li, Zhiyuan</creator><creator>Chen, Rulong</creator><creator>Liu, Lu</creator><creator>Min, Geyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><author>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cartesian coordinate system</topic><topic>Communities</topic><topic>Cosine similarity</topic><topic>Delay</topic><topic>Delays</topic><topic>Economic models</topic><topic>Efficiency</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Mobile communication</topic><topic>movement pattern</topic><topic>Peer-to-peer computing</topic><topic>preference</topic><topic>resource discovery</topic><topic>Routing</topic><topic>Searching</topic><topic>Silicon dioxide</topic><topic>Similarity</topic><topic>Simulation</topic><topic>social Internet of Things (SIoT)</topic><topic>State of the art</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Rulong</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiyuan</au><au>Chen, Rulong</au><au>Liu, Lu</au><au>Min, Geyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>3</volume><issue>4</issue><spage>581</spage><epage>589</epage><pages>581-589</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2015.2451138</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2016-08, Vol.3 (4), p.581-589
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_1807917273
source IEEE Electronic Library (IEL) Journals
subjects Cartesian coordinate system
Communities
Cosine similarity
Delay
Delays
Economic models
Efficiency
Internet
Internet of Things
Mobile communication
movement pattern
Peer-to-peer computing
preference
resource discovery
Routing
Searching
Silicon dioxide
Similarity
Simulation
social Internet of Things (SIoT)
State of the art
Trajectory
title Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Discovery%20Based%20on%20Preference%20and%20Movement%20Pattern%20Similarity%20for%20Large-Scale%20Social%20Internet%20of%20Things&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Zhiyuan&rft.date=2016-08-01&rft.volume=3&rft.issue=4&rft.spage=581&rft.epage=589&rft.pages=581-589&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2015.2451138&rft_dat=%3Cproquest_cross%3E1835643785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807917273&rft_id=info:pmid/&rft_ieee_id=7140727&rfr_iscdi=true