Loading…
Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things
Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordin...
Saved in:
Published in: | IEEE internet of things journal 2016-08, Vol.3 (4), p.581-589 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793 |
container_end_page | 589 |
container_issue | 4 |
container_start_page | 581 |
container_title | IEEE internet of things journal |
container_volume | 3 |
creator | Li, Zhiyuan Chen, Rulong Liu, Lu Min, Geyong |
description | Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay. |
doi_str_mv | 10.1109/JIOT.2015.2451138 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1807917273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7140727</ieee_id><sourcerecordid>1835643785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoWGp_gPgS8MWXrbnt7VFbL5VKi63PS5qdrSm7SU22Yv-9WVpEfJqB-c4wcw5Cl5QMKSX57ctkthwyQuMhEzGlPDtBPcZZGokkYad_-nM08H5DCAmymOZJD32P90Y2WuE38HbnFOCx9sp-gdvje-mhxNbguYMKHJgwlabEr2HcgGnxXLYtOIMXutG1dLrd48o6PJVuDdFCyRrwwiotazwxHQgtthVefmiz9hforJK1h8Gx9tH748Ny9BxNZ0-T0d00UoLnbSTCoUwoxTIoKQdRpcDinFBeJUomQhBWQhUzUCXnkgsmElYl2WpFGVBSpjnvo5vD3q2znzvwbdGEB6GupQG78wXNeJwInmZxQK__oZtgiQnXBYqkOU1ZygNFD5Ry1vvgTLF1upFuX1BSdHEUXRxFF0dxjCNorg4aDQC_fEoF6Vb-AOFwha0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807917273</pqid></control><display><type>article</type><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</creator><creatorcontrib>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</creatorcontrib><description>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2015.2451138</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cartesian coordinate system ; Communities ; Cosine similarity ; Delay ; Delays ; Economic models ; Efficiency ; Internet ; Internet of Things ; Mobile communication ; movement pattern ; Peer-to-peer computing ; preference ; resource discovery ; Routing ; Searching ; Silicon dioxide ; Similarity ; Simulation ; social Internet of Things (SIoT) ; State of the art ; Trajectory</subject><ispartof>IEEE internet of things journal, 2016-08, Vol.3 (4), p.581-589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</citedby><cites>FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7140727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Rulong</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</description><subject>Cartesian coordinate system</subject><subject>Communities</subject><subject>Cosine similarity</subject><subject>Delay</subject><subject>Delays</subject><subject>Economic models</subject><subject>Efficiency</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Mobile communication</subject><subject>movement pattern</subject><subject>Peer-to-peer computing</subject><subject>preference</subject><subject>resource discovery</subject><subject>Routing</subject><subject>Searching</subject><subject>Silicon dioxide</subject><subject>Similarity</subject><subject>Simulation</subject><subject>social Internet of Things (SIoT)</subject><subject>State of the art</subject><subject>Trajectory</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLAzEQhYMoWGp_gPgS8MWXrbnt7VFbL5VKi63PS5qdrSm7SU22Yv-9WVpEfJqB-c4wcw5Cl5QMKSX57ctkthwyQuMhEzGlPDtBPcZZGokkYad_-nM08H5DCAmymOZJD32P90Y2WuE38HbnFOCx9sp-gdvje-mhxNbguYMKHJgwlabEr2HcgGnxXLYtOIMXutG1dLrd48o6PJVuDdFCyRrwwiotazwxHQgtthVefmiz9hforJK1h8Gx9tH748Ny9BxNZ0-T0d00UoLnbSTCoUwoxTIoKQdRpcDinFBeJUomQhBWQhUzUCXnkgsmElYl2WpFGVBSpjnvo5vD3q2znzvwbdGEB6GupQG78wXNeJwInmZxQK__oZtgiQnXBYqkOU1ZygNFD5Ry1vvgTLF1upFuX1BSdHEUXRxFF0dxjCNorg4aDQC_fEoF6Vb-AOFwha0</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Li, Zhiyuan</creator><creator>Chen, Rulong</creator><creator>Liu, Lu</creator><creator>Min, Geyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</title><author>Li, Zhiyuan ; Chen, Rulong ; Liu, Lu ; Min, Geyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cartesian coordinate system</topic><topic>Communities</topic><topic>Cosine similarity</topic><topic>Delay</topic><topic>Delays</topic><topic>Economic models</topic><topic>Efficiency</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Mobile communication</topic><topic>movement pattern</topic><topic>Peer-to-peer computing</topic><topic>preference</topic><topic>resource discovery</topic><topic>Routing</topic><topic>Searching</topic><topic>Silicon dioxide</topic><topic>Similarity</topic><topic>Simulation</topic><topic>social Internet of Things (SIoT)</topic><topic>State of the art</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Rulong</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiyuan</au><au>Chen, Rulong</au><au>Liu, Lu</au><au>Min, Geyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>3</volume><issue>4</issue><spage>581</spage><epage>589</epage><pages>581-589</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2015.2451138</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2016-08, Vol.3 (4), p.581-589 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_1807917273 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cartesian coordinate system Communities Cosine similarity Delay Delays Economic models Efficiency Internet Internet of Things Mobile communication movement pattern Peer-to-peer computing preference resource discovery Routing Searching Silicon dioxide Similarity Simulation social Internet of Things (SIoT) State of the art Trajectory |
title | Dynamic Resource Discovery Based on Preference and Movement Pattern Similarity for Large-Scale Social Internet of Things |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Discovery%20Based%20on%20Preference%20and%20Movement%20Pattern%20Similarity%20for%20Large-Scale%20Social%20Internet%20of%20Things&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Zhiyuan&rft.date=2016-08-01&rft.volume=3&rft.issue=4&rft.spage=581&rft.epage=589&rft.pages=581-589&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2015.2451138&rft_dat=%3Cproquest_cross%3E1835643785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-410524cc28ed13e4f7e259013f6ca64402def52ecd33a342462f68bb12e10d793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807917273&rft_id=info:pmid/&rft_ieee_id=7140727&rfr_iscdi=true |