Loading…
Mean-Based Fuzzy Control for a Class of MIMO Robotic Systems
This paper presents mean-based fuzzy controllers for trajectory tracking for a class of multiple-input multiple-output robotic systems with nonaffine-like form and parametric uncertainties, in which direct adaptive controllers with state estimators are developed via a mean-based fuzzy identifier wit...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2016-08, Vol.24 (4), p.966-980 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents mean-based fuzzy controllers for trajectory tracking for a class of multiple-input multiple-output robotic systems with nonaffine-like form and parametric uncertainties, in which direct adaptive controllers with state estimators are developed via a mean-based fuzzy identifier without prior knowledge of the membership functions. By using the proposed adaptive technique, unfavorable influence from the initial design of membership functions can be effectively diminished. Moreover, the computation burden of the adaptive laws can be successfully alleviated because the derivative of the fuzzy systems is not required. A Lyapunov-based stability analysis is utilized to guarantee successful system control and desired tracking performance of the closed-loop system. Finally, two examples are provided to demonstrate the feasibility of the proposed control method. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2015.2500220 |