Loading…

A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations

In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3]...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2016-07, Vol.29 (14), p.5317-5337
Main Authors: Wang, Yetang, Ding, Minghu, van Wessem, J. M., Schlosser, E., Altnau, S., van den Broeke, Michiel R., Lenaerts, Jan T. M., Thomas, Elizabeth R., Isaksson, Elisabeth, Wang, Jianhui, Sun, Weijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13
cites cdi_FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13
container_end_page 5337
container_issue 14
container_start_page 5317
container_title Journal of climate
container_volume 29
creator Wang, Yetang
Ding, Minghu
van Wessem, J. M.
Schlosser, E.
Altnau, S.
van den Broeke, Michiel R.
Lenaerts, Jan T. M.
Thomas, Elizabeth R.
Isaksson, Elisabeth
Wang, Jianhui
Sun, Weijun
description In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.
doi_str_mv 10.1175/jcli-d-15-0642.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1811288155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26385572</jstor_id><sourcerecordid>26385572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvvggBnztzsyZtH2v9mkz2MH0Ot2nCOrpmS1LB_96OiU-HA797LucQcgtsBpCJh63u2qRJQCRMpnwGZ2QCgrOEpSk_JxOWF2mSZ0JckqsQtowBl4xNyKGkldvt0bfB9dRZWvYRvY6tpgtt6HpjTKTrwVsc3QeGQB-xw3401rsdLePOhf3G-JGvunaHcaRcY7pAsW_ooqfrNg50VQfjvzG2rg_X5MJiF8zNn07J18vzZ_WWLFevi6pcJjplEJNCZiCzAjmKAqTJmhqZ1g0rEKy2lgnBs8I2WqfCIFpErWuUsgZby1obmE_J_Sl3791hMCGqrRt8P75UkAPwPAchRoqdKO1dCN5YtfdjDf-jgKnjsOq9Wi7UkwKhjsOqY_Dd6WQbovP_PJfzXIiMz38BmXt3fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811288155</pqid></control><display><type>article</type><title>A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations</title><source>JSTOR Archival Journals</source><creator>Wang, Yetang ; Ding, Minghu ; van Wessem, J. M. ; Schlosser, E. ; Altnau, S. ; van den Broeke, Michiel R. ; Lenaerts, Jan T. M. ; Thomas, Elizabeth R. ; Isaksson, Elisabeth ; Wang, Jianhui ; Sun, Weijun</creator><creatorcontrib>Wang, Yetang ; Ding, Minghu ; van Wessem, J. M. ; Schlosser, E. ; Altnau, S. ; van den Broeke, Michiel R. ; Lenaerts, Jan T. M. ; Thomas, Elizabeth R. ; Isaksson, Elisabeth ; Wang, Jianhui ; Sun, Weijun</creatorcontrib><description>In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-15-0642.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bias ; Climate models ; Coastal zone ; Data collection ; Hydrology ; Ice ; Precipitation ; Quality ; Sea level ; Seasonal variations ; Snow accumulation ; Trends</subject><ispartof>Journal of climate, 2016-07, Vol.29 (14), p.5317-5337</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13</citedby><cites>FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26385572$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26385572$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Ding, Minghu</creatorcontrib><creatorcontrib>van Wessem, J. M.</creatorcontrib><creatorcontrib>Schlosser, E.</creatorcontrib><creatorcontrib>Altnau, S.</creatorcontrib><creatorcontrib>van den Broeke, Michiel R.</creatorcontrib><creatorcontrib>Lenaerts, Jan T. M.</creatorcontrib><creatorcontrib>Thomas, Elizabeth R.</creatorcontrib><creatorcontrib>Isaksson, Elisabeth</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><title>A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations</title><title>Journal of climate</title><description>In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.</description><subject>Bias</subject><subject>Climate models</subject><subject>Coastal zone</subject><subject>Data collection</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Precipitation</subject><subject>Quality</subject><subject>Sea level</subject><subject>Seasonal variations</subject><subject>Snow accumulation</subject><subject>Trends</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKfvvggBnztzsyZtH2v9mkz2MH0Ot2nCOrpmS1LB_96OiU-HA797LucQcgtsBpCJh63u2qRJQCRMpnwGZ2QCgrOEpSk_JxOWF2mSZ0JckqsQtowBl4xNyKGkldvt0bfB9dRZWvYRvY6tpgtt6HpjTKTrwVsc3QeGQB-xw3401rsdLePOhf3G-JGvunaHcaRcY7pAsW_ooqfrNg50VQfjvzG2rg_X5MJiF8zNn07J18vzZ_WWLFevi6pcJjplEJNCZiCzAjmKAqTJmhqZ1g0rEKy2lgnBs8I2WqfCIFpErWuUsgZby1obmE_J_Sl3791hMCGqrRt8P75UkAPwPAchRoqdKO1dCN5YtfdjDf-jgKnjsOq9Wi7UkwKhjsOqY_Dd6WQbovP_PJfzXIiMz38BmXt3fA</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Wang, Yetang</creator><creator>Ding, Minghu</creator><creator>van Wessem, J. M.</creator><creator>Schlosser, E.</creator><creator>Altnau, S.</creator><creator>van den Broeke, Michiel R.</creator><creator>Lenaerts, Jan T. M.</creator><creator>Thomas, Elizabeth R.</creator><creator>Isaksson, Elisabeth</creator><creator>Wang, Jianhui</creator><creator>Sun, Weijun</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160715</creationdate><title>A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations</title><author>Wang, Yetang ; Ding, Minghu ; van Wessem, J. M. ; Schlosser, E. ; Altnau, S. ; van den Broeke, Michiel R. ; Lenaerts, Jan T. M. ; Thomas, Elizabeth R. ; Isaksson, Elisabeth ; Wang, Jianhui ; Sun, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bias</topic><topic>Climate models</topic><topic>Coastal zone</topic><topic>Data collection</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Precipitation</topic><topic>Quality</topic><topic>Sea level</topic><topic>Seasonal variations</topic><topic>Snow accumulation</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Ding, Minghu</creatorcontrib><creatorcontrib>van Wessem, J. M.</creatorcontrib><creatorcontrib>Schlosser, E.</creatorcontrib><creatorcontrib>Altnau, S.</creatorcontrib><creatorcontrib>van den Broeke, Michiel R.</creatorcontrib><creatorcontrib>Lenaerts, Jan T. M.</creatorcontrib><creatorcontrib>Thomas, Elizabeth R.</creatorcontrib><creatorcontrib>Isaksson, Elisabeth</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yetang</au><au>Ding, Minghu</au><au>van Wessem, J. M.</au><au>Schlosser, E.</au><au>Altnau, S.</au><au>van den Broeke, Michiel R.</au><au>Lenaerts, Jan T. M.</au><au>Thomas, Elizabeth R.</au><au>Isaksson, Elisabeth</au><au>Wang, Jianhui</au><au>Sun, Weijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations</atitle><jtitle>Journal of climate</jtitle><date>2016-07-15</date><risdate>2016</risdate><volume>29</volume><issue>14</issue><spage>5317</spage><epage>5337</epage><pages>5317-5337</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-15-0642.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2016-07, Vol.29 (14), p.5317-5337
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_1811288155
source JSTOR Archival Journals
subjects Bias
Climate models
Coastal zone
Data collection
Hydrology
Ice
Precipitation
Quality
Sea level
Seasonal variations
Snow accumulation
Trends
title A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Antarctic%20Ice%20Sheet%20Surface%20Mass%20Balance%20from%20Atmospheric%20Climate%20Models%20and%20In%20Situ%20Observations&rft.jtitle=Journal%20of%20climate&rft.au=Wang,%20Yetang&rft.date=2016-07-15&rft.volume=29&rft.issue=14&rft.spage=5317&rft.epage=5337&rft.pages=5317-5337&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-15-0642.1&rft_dat=%3Cjstor_proqu%3E26385572%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-9671679a2a5916e7dba0ccd09a1fcff055279fdcc45eaafaaccba66b1fb6bce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1811288155&rft_id=info:pmid/&rft_jstor_id=26385572&rfr_iscdi=true