Loading…
SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES
We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If X is the n × n symmetric matrix with $X_{ij} \sim N(0, b^{2}_{ij})$, we show that $E\left \| X \right \| \stackrel{\textless}{\sim } \underset{i}{\text{ma...
Saved in:
Published in: | The Annals of probability 2016-07, Vol.44 (4), p.2479-2506 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3 |
container_end_page | 2506 |
container_issue | 4 |
container_start_page | 2479 |
container_title | The Annals of probability |
container_volume | 44 |
creator | Bandeira, Afonso S. van Handel, Ramon |
description | We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If X is the n × n symmetric matrix with $X_{ij} \sim N(0, b^{2}_{ij})$, we show that $E\left \| X \right \| \stackrel{\textless}{\sim } \underset{i}{\text{max}} \sqrt{\sum _{j} b^{2}_{ij}} + \underset{ij}{\text{max}}\left | b_{ij} \right | \sqrt{\log n}$. This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices. |
doi_str_mv | 10.1214/15-AOP1025 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1814123989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24735373</jstor_id><sourcerecordid>24735373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKcX70LAm1DNS9ImOdaus4U1KW2GeippbcGhdrbbwf_eyoaH997h-_E-vg-hayD3QIE_gO-FJgdC_RM0oxBITyr-copmhCjwQCh5ji7GcUMICYTgM1SUSVjkWBsdlq9Zbo1NI_xo1npRYqOxTeJJKzJslrgI9cJkOAttkUZxiZ9Tm-BUL-I8npa2eJoijctLdNa5j7G9Ot45Wi9jGyXeyjylUbjyGubLnUedULyRb9L5gQiCtqNBTZxUHaudz5ySrgXZOcoIE4px2VHo5JSicaymDa3ZHN0e_m6H_nvfjrtq0--Hr8myAgkcKFNSTdTdgWqGfhyHtqu2w_unG34qINVfZxX41bGzCb45wJtx1w__JOWC-Uww9gvg2V-r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814123989</pqid></control><display><type>article</type><title>SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES</title><source>Access via JSTOR</source><creator>Bandeira, Afonso S. ; van Handel, Ramon</creator><creatorcontrib>Bandeira, Afonso S. ; van Handel, Ramon</creatorcontrib><description>We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If X is the n × n symmetric matrix with $X_{ij} \sim N(0, b^{2}_{ij})$, we show that $E\left \| X \right \| \stackrel{\textless}{\sim } \underset{i}{\text{max}} \sqrt{\sum _{j} b^{2}_{ij}} + \underset{ij}{\text{max}}\left | b_{ij} \right | \sqrt{\log n}$. This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/15-AOP1025</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Eigenvalues ; Geometrical optics ; Mathematical constants ; Mathematical theorems ; Matrices ; Matrix ; Matrix theory ; Normal distribution ; Phase transitions ; Proof theory ; Random variables ; Scalars ; Semicircles ; Spectrum analysis ; Studies ; Symmetry ; Vertices</subject><ispartof>The Annals of probability, 2016-07, Vol.44 (4), p.2479-2506</ispartof><rights>Copyright © 2016 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Jul 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3</citedby><cites>FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24735373$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24735373$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Bandeira, Afonso S.</creatorcontrib><creatorcontrib>van Handel, Ramon</creatorcontrib><title>SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES</title><title>The Annals of probability</title><description>We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If X is the n × n symmetric matrix with $X_{ij} \sim N(0, b^{2}_{ij})$, we show that $E\left \| X \right \| \stackrel{\textless}{\sim } \underset{i}{\text{max}} \sqrt{\sum _{j} b^{2}_{ij}} + \underset{ij}{\text{max}}\left | b_{ij} \right | \sqrt{\log n}$. This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.</description><subject>Asymptotic methods</subject><subject>Eigenvalues</subject><subject>Geometrical optics</subject><subject>Mathematical constants</subject><subject>Mathematical theorems</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Matrix theory</subject><subject>Normal distribution</subject><subject>Phase transitions</subject><subject>Proof theory</subject><subject>Random variables</subject><subject>Scalars</subject><subject>Semicircles</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKcX70LAm1DNS9ImOdaus4U1KW2GeippbcGhdrbbwf_eyoaH997h-_E-vg-hayD3QIE_gO-FJgdC_RM0oxBITyr-copmhCjwQCh5ji7GcUMICYTgM1SUSVjkWBsdlq9Zbo1NI_xo1npRYqOxTeJJKzJslrgI9cJkOAttkUZxiZ9Tm-BUL-I8npa2eJoijctLdNa5j7G9Ot45Wi9jGyXeyjylUbjyGubLnUedULyRb9L5gQiCtqNBTZxUHaudz5ySrgXZOcoIE4px2VHo5JSicaymDa3ZHN0e_m6H_nvfjrtq0--Hr8myAgkcKFNSTdTdgWqGfhyHtqu2w_unG34qINVfZxX41bGzCb45wJtx1w__JOWC-Uww9gvg2V-r</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Bandeira, Afonso S.</creator><creator>van Handel, Ramon</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20160701</creationdate><title>SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES</title><author>Bandeira, Afonso S. ; van Handel, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic methods</topic><topic>Eigenvalues</topic><topic>Geometrical optics</topic><topic>Mathematical constants</topic><topic>Mathematical theorems</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Matrix theory</topic><topic>Normal distribution</topic><topic>Phase transitions</topic><topic>Proof theory</topic><topic>Random variables</topic><topic>Scalars</topic><topic>Semicircles</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandeira, Afonso S.</creatorcontrib><creatorcontrib>van Handel, Ramon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandeira, Afonso S.</au><au>van Handel, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES</atitle><jtitle>The Annals of probability</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>44</volume><issue>4</issue><spage>2479</spage><epage>2506</epage><pages>2479-2506</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If X is the n × n symmetric matrix with $X_{ij} \sim N(0, b^{2}_{ij})$, we show that $E\left \| X \right \| \stackrel{\textless}{\sim } \underset{i}{\text{max}} \sqrt{\sum _{j} b^{2}_{ij}} + \underset{ij}{\text{max}}\left | b_{ij} \right | \sqrt{\log n}$. This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOP1025</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2016-07, Vol.44 (4), p.2479-2506 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_proquest_journals_1814123989 |
source | Access via JSTOR |
subjects | Asymptotic methods Eigenvalues Geometrical optics Mathematical constants Mathematical theorems Matrices Matrix Matrix theory Normal distribution Phase transitions Proof theory Random variables Scalars Semicircles Spectrum analysis Studies Symmetry Vertices |
title | SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHARP%20NONASYMPTOTIC%20BOUNDS%20ON%20THE%20NORM%20OF%20RANDOM%20MATRICES%20WITH%20INDEPENDENT%20ENTRIES&rft.jtitle=The%20Annals%20of%20probability&rft.au=Bandeira,%20Afonso%20S.&rft.date=2016-07-01&rft.volume=44&rft.issue=4&rft.spage=2479&rft.epage=2506&rft.pages=2479-2506&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/15-AOP1025&rft_dat=%3Cjstor_proqu%3E24735373%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-2a794c8d8a56766ef26b0a89f3ba53a98ae18fa230379348f21f8091ca3b2c2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1814123989&rft_id=info:pmid/&rft_jstor_id=24735373&rfr_iscdi=true |